Организационно-технологические схемы возведения зданий и сооружений и методы производства работ. Организационно-технологическая схема возведения объекта Организационно технологические схемы возведения зданий и сооружений

Организационно-технологическая схема возведения объекта устанавливает членение объекта на монтажные участки, зоны, захватки, делянки, ярусы, определяет последовательность выполнения строительно-монтажных и других работ на объекте и их сменность. Вначале сооружение разбивается в плане на захватки, а по высоте - на ярусы.

Наличие нескольких захваток позволяет одновременно на объекте выполнять различные работы и увязывать друг с другом специализированные потоки.

Размеры и границы захваток устанавливаются исходя из объёмно-планировочных и конструктивных решений и объёмов работ на объекте. Так, в нашей насосной станции первого подъёма в качестве захватки принимаем пролёт здания, и захватки имеют одинаковую трудоёмкость. Организовываются ритмичные потоки.

Членение объекта на захватки, участки и ярусы предопределяет и выбор организационной схемы движения бригад в каждом из специализированных потоков.

При возведении насосной станции первого подъёма используем горизонтальную схему движения бригад, при которой работы выполняются последовательно на всех захватках одного яруса по всей длине участка.

Последовательность выполнения строительно-монтажных работ на объекте определяется его конструктивными особенностями и принятой технологией производства работ.

Часто на последовательность работ оказывают влияние чисто организационные соображения. Например, монтаж фундаментов под оборудование в НС I может выполняться одновременно с устройством фундаментов под несущие конструкции здания, либо после того, как несущие конструкции будут смонтированы.

Совмещение во времени нескольких строительных процессов на объекте ведёт к уменьшению общего срока его строительства и позволяет обеспечить ритмичную работу бригад. При выборе последовательности производства работ необходимо учитывать условия, обеспечивающие надлежащее качество работ.

Устройство рулонной кровли в одноэтажном здании НС I для её сохранности необходимо производить после остекления фонарей и устройства внутренних водостоков.

На выбор последовательности работ оказывает существенное влияние время года и климатическая зона строительства. Необходимо по возможности перенести на тёплый период года работы, выполнение которых больше всего осложняется в зимний период.

При составлении организационно-технологической схемы необходимо наметить сменность выполнения отдельных работ. Увеличение сменности приводит к сокращению продолжительности строительства, что даёт значительный технико-экономический эффект. Многосменную работу следует предусматривать для механизированных процессов при наличии в процессе ведущих дорогостоящих строительных машин (механизированные земляные работы, монтажные и др. работы).

Для установления технологической последовательности работ в границах рациональных размеров захваток (участков) в целях сокращения сроков строительства и исключения простоев при организации поточного производства разрабатывают организационно-технологическую схему возведения объекта.

В качестве захваток принимаются повторяющиеся пролеты, секции, этажи, конструктивные объемы по определенной группе осей, рядов и отметок здания. Разбивка здания на захватки производится с учетом обеспечения необходимой устойчивости и пространственной жесткости несущих конструкций здания в условиях их самостоятельной работы в пределах захватки. Желательно, чтобы границы захваток совпадали с конструктивным членением здания температурными и осадочными швами.

Организационно-технологическая схема показывает направления развития частных и специализированных потоков (рис. 5.1). Развития потоков зависит от объемно-планировочного и конструктивного решения здания, видов выполняемых работ и используемых машин и механизмов.



Б а) б) В
ззззззз


Основными схемами развертывания потоков принимаются: горизонтальная, вертикальная, наклонная и смешанная. Размеры захваток устанавливают исходя из планировочных, объемных и конструктивных решений здания и направлений развития основных процессов по его возведению. При строительстве здания схема развития потоков может быть разной для периода возведения подземной и надземной частей здания в зависимости от их конструктивных решений и трудоемкости возведения, а также отличаться от периода выполнения отделочных и специальных работ. Преобладающей схемой развития в многоэтажном строительстве является горизонтально-вертикальная, в одноэтажном ─ горизонтальная.

В разделе 5.1 приводится принятая организационно-технологическая схема возведения объекта, отражающая все периоды строительства и дается краткое обоснование, учитывающее конструктивную схему здания, его геометрические размеры, технологические особенности производства работ, условия техники безопасности и охраны труда.

Методы производства работ

В разделе производится выбор методов производства работ, обоснование применения механизмов и машин по объекту. При выборе монтажных кранов необходимо обосновать определение типа крана, разработать схему определения монтажных характеристик крана (схема включается в состав пояснительной записки настоящего раздела) и привести технические параметры крана. Выбор номенклатуры инструмента, инвентаря и приспособлений для выполнения всех видов строительно-монтажных работ и технологических процессов приводится в таблице 5.4.

Таблица 5.4 - Номенклатура инструмента, инвентаря и приспособлений

для выполнения СМР

Выбранная номенклатура строительных машин и механизмов вносится в карточку-определитель работ и ресурсов сетевого графика (таблица 5.5, графы 10,11) и отражается на графике движения основных строительных машин по объекту в графической части проекта (приложение 23). В качестве справочного материала рекомендуется Справочник строителя .

В этом же разделе описывают технологические методы выполнения работ поэтапно, в порядке последовательности их выполнения при строительстве объекта в целом. При описании указывается численный состав бригад (звеньев) рабочих-исполнителей и схемы движения специализированных потоков, принятые в подразделе 5.1.

По результатам проведенных расчетов и принятых решений при проектировании объектного стройгенплана формируется второй лист курсового проекта, включающий чертеж в масштабе, позволяющем занимать 30 – 40 % листа формата А1, используемые условные обозначения, экспликацию постоянных и временных зданий и графики необходимых трудовых, материальных и технических ресурсов, а также технико-экономиче-

ские показатели по проекту в целом и проекту производства работ. В качестве примера рассмотрены листы со стройгенпланом строительства многоэтажного жилого дома с применением башенного крана на нестесненной площадке для производства работ и размещения строительного хозяйства (приложение 24) и строительства одноэтажного многопролетного промздания с организацией движения самоходного монтажного крана внутри здания (приложение 25).

Таблица работ и ресурсов сетевого графика

На основании подсчитанных объемов работ, принятой организационно-технологической схемы возведения объекта, принятых методов производства работ составляется таблица работ и ресурсов сетевого графика.

Такую таблицу называют карточка-определитель, и она является в целом таблицей исходных данных. Карточка-определитель представляет собой сведенные в форму таблицы 5.5 характеристики работ сетевой модели. В сетевую модель строительства включаются все работы по этапам:

A. Подготовительный период.

Б. Подземная часть (нулевой цикл).

B. Надземная часть.

Выполнение этих работ необходимо для сдачи объекта в эксплуатацию независимо от характера этих работ и ведомственной принадлежности их исполнителей. Степень детализации сетевой модели выбирается как разумный компромисс между стремлением получения более точного и реального плана работ и нежелательностью усложнения модели.

В таблице исходных данных, разрабатываемой в составе ППР, номенклатура работ детализируется с учетом специализации строительных подразделений, организационно-технологической схемы строительства здания и нормативной базы.

В таблицу исходных данных обязательно должны быть включены все работы сетевого графика с идентичными формулировками. Если формулировка работы соответствует формулировке нормативных источников, характеристики работ определяются прямым нормированием. Для сложных работ (комплексов) нормирование производят путем калькулирования или применения типовых калькуляций и технологических карт.

Затраты труда и машинного времени на выполнение работ или их комплексов определяются по «Сборникам территориальных единичных расценок в краснодарском крае (ТЕР 81-02-2001)» или сборниками ЕНиР. Сборники ЕНиР, как и калькуляции на выполнение некоторых видов работ, применяются случаях, когда требуется информация, в дополнение к сборникам ТЕР. Рекомендуемая номенклатура работ, единицы их измерения и ссылки на нормативные источники приведены в приложении 1.

До разработки таблицы исходных данных уточняются организации-исполнители, характер выполняемых ими работ, специализация, профессиональный и количественный состав бригад рабочих, выработка, достигнутая в бригадах, и оснащенность основными машинами и механизмами.

Отмечаются следующие особенности расчета при заполнении таблицы исходных данных (см. табл. 5.5):

─ при выполнении механизированных процессов, когда, организация и темп работ определяются ведущей машиной;

─ при выполнении немеханизированных процессов, когда организация и темп работ определяются бригадой рабочих.

Каждая из перечисленных особенностей расчета таблицы рассматривается на примере производства работ на одном участке одноэтажного промздания с размерами в плане 72.0 х 66.0 м.

Четко выдерживать сроки строительства, работать экономично с максимальным и эффективным использованием строительных механизмов позволяет схема производства работ. Такие схемы выполняют в виде планов и разрезов. Наиболее удобными считаются масштабы 1:100 и 1:200.

На схеме производства работ вычерчивают контуры строящегося здания и его элементы. Схематично показывают контуры строительных механизмов и стрелкой путь их следования. Здесь же обозначают места стоянки строительных механизмов, также указывают места и способы складирования индустриальных изделий, необходимых для возведения здания. На схеме производства работ показывают расположение подмостей, стремянок, обносок и другого оборудования и инвентаря, используемого при производстве строительно-монтажных работ. Вне габарита контура строящегося здания указывают расстояние между координационными осями, размеры, связанные с изображаемыми строительными процессами. Это могут быть расстояния между местами остановок строительных механизмов, размеры площадок для складирования строительных изделий и расстояние от них до земли и т.п.

На схеме могут быть даны спецификации элементов строящегося здания, перечень механизмов и оборудования, условные обозначения, применяемые здесь, и необходимые примечания.

На рис. 14.7.1 приведена схема производства работ по установке панелей второго этажа.

Цифры в двойных кружках обозначают место стоянки крана, а дуги окружностей и цифры внутри дуг - значения максимального и минимального вылета крюка крана. Цифры, расположенные около панелей, определяют последовательность их монтажа, Кроме того, на схеме изображают места складирования необходимых материалов и т.д.

На схеме также указывают коордиоционные оси, размеры и положение секущей плоскости.

На схеме изображают положение механизма и разрез здания с номерами панелей.

На разрезе здания указывают коордиоционные оси, размеры между ними, а также расстояние до подъемного механизма. Иногда приводят график зависимости грузоподъемности крана от вылета крюка и необходимые примечания (рис. 14.7.2).

На рис. 14.7.3 показана схема монтажа металлической арки с затяжкой, где 1 - гусеничный кран; 2- временная опора; 3 - опорный узел с винтовым домкратом.

Большая гибкость арок, как правило, не позволяет монтировать их целиком. Поэтому их монтаж выполняют, преимущественно, из отдельных частей с использованием временных опор, число которых зависит от пролета арки, архитектурно-планировочного решения (не всегда есть возможность установки опор в любом месте) и монтажного оборудования.

Выбор технологической схемы производства работ зависит от цели ремонта, категории автомобильной дороги, конструкции дорожной одежды, ее состояния.

Технологическую схему разрабатывает подрядчик на основе проекта, имеющегося у него в наличии оборудования и выбранного типа АГБ-смеси.

На рисунке 6.2 приведены схемы работ, в которых операция фрезерования отделена от остальных операций.

Рисунок 6.2 Технологические схемы холодной регенерации с использованием в качестве ведущей машины смесителя-укладчика:

1 - каток; 2 - смеситель-укладчик; 3 - фреза; 4 - подборщик; 5 - валик АГ; 6 - автомобиль-самосвал; 7 - склад АГ.

После выравнивания покрытия с помощью дорожной фрезерной машины (далее фрезы) осуществляют регенерационное фрезерование пакета асфальтобетонных слоев на проектную глубину. Образующийся АГ, по транспортеру, имеющемуся на фрезе, поступает в приемный бункер смесителя-укладчика. Оттуда он попадает в двухвальную мешалку горизонтального типа, где перемешивается с органическим вяжущим. Готовую смесь укладывают и уплотняют.

Согласно схеме (рис.6.2, а), фреза работает в сцепе со смесителем-укладчиком, который является ведущей машиной. Производительность смесителя-укладчика - 80-150 т/ч, что соответствует рабочей скорости 2-3 м/мин. Толщина укладываемого слоя - до 12 см. Так как рабочая скорость фрезы составляет 7-10 м/мин, очевидно, что ее производительность искусственно будет занижена минимум в три раза.

Смеситель-укладчик имеет два скользящих уширителя, что позволяет варьировать ширину укладки от 2,4 до 4,2 м. Отсюда следует, что минимальная ширина фрезерования должна составлять 2,4 м.

Недостатком этой схемы является то, что при неисправности или техническом обслуживании одной из машин останавливается весь поток.

По схеме (рис.6.2, б) фреза оставляет АГ на проезжей части в виде призмы. Ее подбирает прицепной или самоходный подборщик, работающий в сцепе со смесителем-укладчиком, и направляет в приемный бункер последнего. Здесь производительность фрезы не зависит от производительности ведущей машины.

Регенерационное фрезерование может быть совмещено с выравнивающим (рис.6.2, в). В этом случае фреза работает в одном звене с автомобилями-самосвалами, которые доставляют основной объем АГ к смесителю-укладчику, а избыток АГ - на другой объект или склад.

Возможен также вариант, при котором работу фрезы не увязывают с работой смесителя-укладчика. АГ складируют на притрассовых складах, откуда отгружают погрузчиком в автомобили-самосвалы и направляют к смесителю-укладчику.

Наиболее дешевым и технологичным является второй вариант.

Смеситель-укладчик приспособлен в первую очередь для работы со смесями типа Э. Он имеет емкость для хранения 10 т эмульсии и дозирующее устройство.

При необходимости увеличения содержания щебня в АГБ-смеси или корректировки ее гранулометрического состава новый материал распределяют ровным слоем требуемой толщины по покрытию перед регенерационным фрезерованием или после него.

На рис.6.3 приведена технологическая схема с использованием в качестве смесителя-укладчика ремиксера, освобожденного от газового оборудования для разогрева покрытия. Здесь операция регенерационного фрезерования также отделена от остальных операций.

После проходов фрезы автогрейдер профилирует призмы АГ ровным слоем по всей ширине регенерируемой полосы.

Смеситель-укладчик (далее - регенератор) позволяет готовить смеси типов Э, М и К. В комплекте с ним работает специальная машина, оборудованная силосными банками для хранения эмульсии, цемента и воды (рис.6.3, а). Материал для корректировки гранулометрического состава АГБ-смеси можно выгружать непосредственно в приемный бункер регенератора.

Для подачи АГ в смеситель не требуется подборщик. Эту операцию выполняют специальные шнеки.

Ширину укладки можно изменять в пределах от 3,5 до 4,5 м, что, как и в случае смесителя-укладчика, облегчает выполнение кратного числа проходов по ширине покрытия.

Толщина укладываемого слоя - до 30 см; рабочая скорость - до 16 м/мин; производительность - около 300 т/ч.

На регенераторе имеются емкости для хранения эмульсии, цемента и воды, которые пополняются из автомашины с силосными банками.


Рисунок 6.3. Технологические схемы ХР с использованием в качестве ведущей машины регенератора:

1 - каток; 2 - регенератор; 3 - машина с силосными банками для основных компонентов смеси;

4 - автогрейдер; 5 - фреза; 6 - эмульсиовоз; 7 - суспензатор

Дозировкой компонентов управляют микропроцессоры.

В последнее время все большее распространение получает технология, предусматривающая добавку цемента и воды в смесях типов М и К в виде цементного теста (суспензии). Для его приготовления на регенераторе имеется соответствующее устройство. Применяется и специальная машина - суспензатор. На рис.6.3, б показана схема ХР с приготовлением смеси типа К с добавлением суспензии.

Была также создана машина, совмещающая операции регенерационного фрезерования с приготовлением и укладкой АГБ-смеси. Эта машина работает в комплекте со специальной дозировочной машиной, оборудованной силосными банками для эмульсии, цемента и воды. Она также позволяет готовить смеси типов Э, М и К.

Позднее было признано более целесообразным отделить функцию фрезерования, предоставив ее фрезе, и облегчить тем самым основную машину.

Технологическая схема, предусматривающая совмещение всех основных операций одной машиной, представлена на рис.6.4.


Рисунок 6.4. Технологическая схема ХР с использованием в качестве ведущей машины фрезы-регенератора и изготовлением смеси типа Э:

1 - каток; 2 - фреза-регенератор; 3 - эмульсиовоз

Здесь в качестве ведущей машины использована фреза-регенератор гусеничного типа.

Перемешивание АГ с добавками осуществляется под кожухом фрезерного барабана, а для укладки АГБ-смеси имеется навесное оборудование, аналогичное установленному на обычных асфальтоукладчиках.

В комплекте с этой машиной работают эмульсиовоз - автоцистерна для транспортировки, хранения и подачи эмульсии (когда готовят смесь типа Э) и (или) суспензатор (когда готовят смеси типов К или М).

Ранее цемент распределяли по покрытию перед фрезерованием специальным цементовозом-распределителем, но эта операция оказалась нетехнологичной из-за пылимости цемента. Применение цементного теста устранило отмеченный недостаток.

Добавление нового минерального материала (если это необходимо) осуществляют, как указано выше.

Ширина фрезеруемой полосы 2 м, но в специальном варианте она может быть увеличена до 2,5 м. Глубина фрезерования достигает 30 см.

Рабочая скорость машины существенно зависит от глубины фрезерования и в среднем составляет 5-7 м/мин.

На регенераторе имеются дозаторы для воды и эмульсии. Специальное прижимное устройство предотвращает образование крупных кусков асфальтобетона в процессе фрезерования. Вибротрамбующий рабочий орган позволяет достичь высокой степени предварительного уплотнения смеси.

Качество перемешивания смеси этой машиной ниже, чем при использовании машин, описанных выше, так как последние оборудованы специальными двухвальными смесителями, а здесь перемешивание осуществляется фрезерным рабочим органом без гомогенизации смеси в поперечном направлении.

На рис.6.5 показаны технологические схемы с использованием в качестве ведущей машины фрезы-грунтосмесителя (далее - стабилизер) на колесном ходу. Эта машина значительно проще упомянутых выше, хотя и совмещает основные операции.

Как правило, стабилизер работает по двухпроходной схеме. Сначала он фрезерует дорожную одежду на заданную глубину, а автогрейдер разравнивает призмы АГ (рис.6.5, а). Затем им же осуществляется перемешивание АГ с добавками при повторном проходе.

Дозировка битума, эмульсии и воды осуществляется насосами, управляемыми микропроцессорами, а цементного теста - насосом суспензатора. Перемешивание АГ с добавками происходит под кожухом фрезерного барабана. Регулируемый по высоте зачистной отвал, расположенный за фрезерным барабаном, улучшает качество перемешивания.

Ширина фрезеруемой полосы - 2,44 м, а глубина фрезерования достигает 50 см. Средняя рабочая скорость при фрезеровании (первый проход) - 7-15 м/мин, а при смешении (второй проход) - 10-20 м/мин.

В зависимости от типа АГБ-смеси стабилизер работает в комплекте со вспомогательными машинами (рис.6.5, б-д).

В отличие от фрезы-регенератора, данная машина не имеет специального оборудования для распределения, выглаживания и предварительного уплотнения смеси. Смесь разравнивает автогрейдер. Отсюда ровность слоя и соответствие заданному поперечному профилю будет ниже, чем по предыдущим схемам.

Стабилизер в качестве ведущей машины используют для ХР обычно на второстепенных дорогах.

Все вышеперечисленные технологические схемы объединяет то, что АГБ-смесь готовят непосредственно на дороге в процессе перемещения строительного потока. Однако возможна схема, при которой АГ, полученный в процессе фрезерования, складируют вблизи дороги. Там же, на полустационарной смесительной установке, готовят смесь, которую транспортируют к месту укладки.


Рисунок 6.5. Технологические схемы ХР с использованием в качестве ведущей машины стабилизера:

а - предварительное фрезерование покрытия; б, в, г, д - изготовление смесей типов: Э, М, В, К соответственно;

1 - автогрейдер; 2 - стабилизер; 3 - каток; 4 - эмульсиовоз; 5 - водовоз; 6 - цементовоз-распределитель;

7 - битумовоз; 8 - суспензатор

Организационно-технологические схемы строительства являются основой календарного планирования. Они определяют технологическую и организационную последовательность выполнения работ. Например, в соответствие с принятой технологией работ необходимо выполнить фундаментные работы, а затем приступить к строительству надземной части. Или при отрывке котлована (траншеи) в условиях повышенного уровня грунтовых вод необходимо предусмотреть работы связанные с водопонижением. При производстве отделочных работ до их начала необходимо смонтировать внутренние инженерные системы, которые должны обеспечить в помещениях необходимый тепловой и водный режимы.

На основе представленных примеров, можно сделать следующее обобщение. Каждая работа в календарном графике может быть представлена двумя событиями началом и окончанием и между этими событиями для любой пары работ может быть установлена связь, показывающая зависимость между выделенными событиями. При этом, если смежные работы выполняются общим ресурсом, то связь между ними носит название ресурсной или, другими словами, организационной связи. Если же последовательность смежных работ определена технологической зависимостью, то такие связи принято называть технологическими или фронтальными связями.

В программах управления проектами все работы представляют в виде списка и, следовательно, а «физический» порядок их следования определяется соответствующими номерами в списке. Для определения связей принято условие, что работа, от события которой зависит событие другой работы, является предшествующей. Работа, событие которой зависит от события предшествующей работы, считается последующей. Чисто формально, между предшествующей работой, которую обозначим индексом i , и последующей работой, которую обозначим индексом j , связь может отсутствовать, либо существовать одна из 4-х разновидностей: конечно-начальная связь ОН, начально-начальная связь НН, конечно-конечная связь ОО и начально-конечная связь НО. В результате установления связей между двумя событиями предшествующей и последующей работ могут быть установлены следующие неравенства

t Oj t Hi ±t ij

t Oj t Oi ±t ij (1)

t Hj t Hi ±t ij

t Hj t Oi ±t ij

В частности последнее неравенство показывает, что начало последующей работы (t Hj ) должно быть больше или равно (≥) окончанию предшествующей работы (t Oi ) с дополнительным учетом положительного или отрицательного лага времени (±t ij ), определяемого для данной связи. В качестве примера возьмем два последовательно выполняемых рабочих процессов: бетонирование конструкции и последующая распалубка. Очевидно, что начало процесса распалубки должно состояться не ранее окончания процесса бетонирования, но к этому нужно добавить время необходимое для набора определенной прочности конструкции. Таким образом, на основании анализа всех работ объединенных в единый календарный график, определяется его организационно-технологическая схема.


После формирования организационно-технологической схемы переходят к определению основных количественных характеристик работы, к которым относятся трудозатраты - q , продолжительность - t и трудовые и машинные ресурсы - r , которые определяют соответствующую продолжительность. Соотношение между этими характеристиками описывается следующим уравнением

q=r·t (2)

Каждая из величин, входящих в уравнение (2) может быть определена как функция, аргумент либо как заданный параметр. Например, по уравнению (2) наиболее часто рассчитывается продолжительность работы, то есть она является функцией, трудозатраты при этом фигурируют как заданный параметр, зависящий от физического объема работы, а значение трудовых ресурсов является независимым аргументом, который, в конечном счете, и определяет искомую продолжительность. Трудозатраты работ определяются либо производственными (ЕНиР, РАТУ и др.), либо сметными нормативами (ФЭР, ТЭР и др.).

Следует заметить, что те ресурсы, которые определяют продолжительность работы, называются ведущими ресурсами. Однако имеют место и ведомые ресурсы, для которых продолжительность определяется ведущими ресурсами. Например, продолжительность возведения кирпичных стен здания будет определяться количеством каменщиков, а продолжительность работы башенного крана, как ведомого ресурса, будет зависеть от продолжительности работы ведущего ресурса, то есть каменщиков. Таким образом, для ведомого ресурса продолжительность будет являться заданным параметром, количество ведомого ресурса будет выступать в роли аргумента, а трудозатраты будут определены как функция.

Для учета подобного рода обстоятельств, в программах управления проектами типа Microsoft Project , используется как иерархическая схема представления работ составных работ, так и определения структуры расчета для простых работ.

3.3. Автоматизированный расчет календарных планов в программах управления проектами

Интерфейс программ управления проектами типа Microsoft Project разделен на два основных блока. Первый блок представляет собою электронную таблицу, второй блок – графическое отображение календарного плана в форме диаграммы Ганта, сетевого графика или традиционного календаря. Наиболее используемой формой является диаграмма Ганта, поскольку она в большей степени корреспондирует с традиционно принятым в РФ линейным календарным графиком. Построение календарного графика основано на вводе и (или) расчете характеристик по двум основным взаимосвязанным объектам, а именно: по ресурсам и по выполняемым в процессе строительства задачам (работам).

Все работы и используемые для их выполнения ресурсы, вводятся списком, т.е. построчно, при этом они разделяются на простые и составные работы. Составные работы могут включать в себя как составные, так и простые работы. Простые работы не включают в себя никаких других работ и определяют продолжительности, трудоемкости и стоимости соответствующих составных работ. Таким образом, работы могут быть структурированы по иерархическому принципу. Продолжительность составной работы определяется разностью между максимальным окончанием и минимальным началом из всего списка, входящих работ.

Временные ограничения для выполняемых работ определяются двумя параметрами: типом ограничения и, если необходимо, датой ограничения. Для простых задач используется 8 типов ограничений:

1) как можно раньше;

2) как можно позже;

3) начать не раньше, чем на определенную дату;

4) закончить не позже, чем на определенную дату;

5) начать точно в определенную дату;

6) закончить точно в определенную дату;

7) начать не позже, чем на определенную дату;

8) закончить не раньше, чем на определенную дату;

Для составных работ могут быть использованы только первые три ограничения.

В программе типа МР формируется список всех используемых в строительстве ресурсов. Для каждого ресурса определяется график их предельного количества (машин, рабочих и др.), т.е. определяется установленный пользователем динамический лимит, который не должен быть превзойден в календарном плане. Если ресурс превысит определенный предел, то возникнет ресурсный конфликт, обычно отображаемый в программе красным цветом. Устраняется ресурсный конфликт пользователем исходя из содержания конкретной задачи. Для количественной оценки максимумов используемых ресурсов служит соответствующая расчетная характеристика, определяющая пиковую загрузку ресурса. Если конкретный ресурс «идет по красному», то из данной графы будет видно его превышение над максимумом. На возникновение конфликта также влияет определение момента готовности ресурса, который устанавливается либо на начало работы, либо на ее конец, либо на всю продолжительность работы.

Пользователем определяется повременная оплата ресурса за единицу трудоемкости выполняемой работы как стандартная и сверхурочные ставки и единовременная оплата за каждую ресурсную единицу при каждом назначении. Для используемых ресурсов рассчитывается трудоемкость с размерностью в днях. Произведение трудоемкости данного ресурса на тариф повременной оплаты определяет общую повременную оплату. Общая единовременная оплата рассчитывается как произведение соответствующего тарифа на количество используемого ресурса и на число его назначений в КП. Сумма повременных и единовременных затрат определяет общую стоимость используемого ресурса. График работы каждого трудового ресурса может быть организована с учетом либо стандартного, либо индивидуального календаря.

Помимо трудовых (машины и люди) в программе используются материальные ресурсы. Суммарная стоимость трудовых и материальных ресурсов определяет прямые затраты.

Стоимости работ определяются стоимостями используемых ресурсов и фиксированными стоимостями, при этом последняя может определять некоторые фиксированные затраты (стоимость оборудования, мебели и др.). Т.о., учитываемая в программе сметная стоимость распределена во времени, то есть динамически, и она определяет инвестиционный денежный поток.

3.4 Алгоритм расчета расписаний работ методом критического пути .

Для расчета расписания работ, представленного на рис.2, опишем его организационно-технологическую схему.

Случайные статьи

Вверх