Экономическое моделирование. Экономическое моделирование: определение понятия, классификация и виды, описание методов

Центральные проблемы экономической науки - рациональное ведение хозяйства, оптимальное распределение ограниченных ресурсов, изучение экономических механизмов управления, разработка методов экономических расчетов - по существу являются задачами, решаемыми в рамках математических наук. Количественные и качественные методы математики являются наилучшим вспомогательным аппаратом для получения ответов на основные вопросы экономики. Так как при наличии математической модели мы избавляемся от необходимости дорогостоящих экспериментов, как правило, сопровождаемых многократными пробами и ошибками.

Целью моделирования экономических систем является использование методов математики для наиболее эффективного решения задач, возникающих в сфере экономики, с применением современной вычислительной техники.

В истории моделирования экономики можно выделить следующие этапы:

  • этап формирования и применения имитационных математических моделей экономических объектов на основе отдельных закономерностей экономики, которые лишь частично удовлетворяли предъявляемым требованиям и не обладали познавательными функциями;
  • этап формирования и применения функциональных математических моделей экономических объектов на основе законов экономических систем. Особенностью функционального моделирования является то, что оно основано на фундаментальных законах функционирования экономики, а преимуществом то, что функциональные модели в полной степени удовлетворяют предъявляемым требованиям и обладают высокими познавательными функциями.

Объектами исследования моделирования экономических систем являются любые экономические объекты, поэтому экономических систем актуально для специалистов по управлению экономическими объектами, особенно для тех, кто связан с созданием автоматизированных систем управления экономическими объектами. Математические модели и методы моделирования экономических объектов являются необходимыми для управления экономическими объектами.

Математические модели экономических систем должны удовлетворять требованиям: адекватности, универсальности, полноты и простоты, должны соответствовать расчетным практическим формулам. Требованиям, предъявляемым к математическим моделям, наиболее соответствуют детерминированные, динамические, полные, непрерывные и дискретные модели.

Модели экономических систем можно подразделить на:

  • математические (количественные),
  • аналитические (имитационные, структурные).
  • вещественные,
  • символьные,
  • словесно-описательные,
  • формальные,
  • функциональные и др.

Этапы практического моделирования:

  1. Анализ экономической системы, ее идентификация и определение достаточной структуры для моделирования.
  2. Синтез и построение модели с учетом ее особенностей и математической спецификации.
  3. Верификация модели и уточнение ее параметров.
  4. Уточнение всех параметров системы и соответствие параметров модели, их необходимое корректирование.

С понятием «моделирование экономических систем» связаны два класса задач:

  1. задачи анализа, когда система подвергается глубокому изучению ее свойств, структуры и параметров, то есть исследуется предметная область будущего моделирования;
  2. Задачи синтеза, получения экономической модели данной системы, где под моделью понимается изображение, представление объекта, системы, процесса в некоторой форме, отличной от реального существования.

Процесс решения экономических задач включает следующие этапы:

  1. Содержательная постановка задачи.
  2. Системный анализ.
  3. Системный синтез.
  4. Разработка или выбор программного обеспечения.
  5. Решение задачи.

Для того чтобы задачу можно было описать количественно и использовать при ее решении вычислительную технику, нужно произвести качественный и количественный анализ объектов и ситуаций, имеющих к ней отношение. При этом сложные объекты, разбиваются на части (элементы), определяются связи этих элементов, их свойства, количественные и качественные значения свойств, количественные и логические соотношения между ними, выражаемые в виде уравнений, неравенств и т.п. Это – этап системного анализа задачи, в результате которого объект оказывается представленным в виде системы.

Следующим этапом является математическая постановка задачи, в процессе которой осуществляется построение математической модели объекта и определение методов (алгоритмов) получения решения задачи. Это – этап системного синтеза (математической постановки) задачи. Следует заметить, что на этом этапе может оказаться, что ранее проведенный системный анализ привел к такому набору элементов, свойств и соотношений, для которого нет приемлемого метода решения задачи, в результате приходится возвращаться к этапу системного анализа. Как правило, решаемые в экономической практике задачи стандартизованы, системный анализ производится в расчете на известную математическую и алгоритм ее решения, проблема состоит лишь в выборе подходящего метода.

Следующим этапом является разработка программы решения задачи на ЭВМ. Для сложных объектов, состоящих из большого числа элементов, обладающих большим числом свойств, может потребоваться составление базы данных и средств работы с ней, методов извлечения данных, нужных для расчетов. Для стандартных задач осуществляется не разработка, а выбор подходящего пакета прикладных программ и системы управления базами данных.

На заключительном этапе производится эксплуатация модели и получение результатов.

Таким образом, последовательное использование методов моделирования экономических систем, их реализация на современной информационно-вычислительной технике позволяет преодолеть субъективизм, исключить так называемые волевые решения, основанные не на строгом и точном учете объективных обстоятельств, а на случайных эмоциях и личной заинтересованности руководителей различных уровней. Системный анализ позволяет учесть и использовать в управлении всю имеющуюся информацию об управляемом объекте, согласовать принимаемые решения с точки зрения объективного, а не субъективного, критерия эффективности.

ЭВМ не только позволяет учесть всю информацию, но и избавляет управленца от ненужной ему информации, а всю нужную пускает в обход человека, представляя ему только самую обобщенную информацию, квинтэссенцию.

Современные представления функционального моделирования экономических объектов выражены в законах функционирования, функциональных моделях и методах моделирования экономических систем. Овладение функциональным моделированием обеспечивает повышение качества моделирования поведения экономических объектов, созданию автоматизированных систем управления экономическими объектами и в конечном итоге эффективности управления экономическими объектами.

Министерство образования и науки украины

ХарькОвский Национальний университет радиоэлектроники

КОНСПЕКТ ЛЕКЦИЙ

"Моделирование экономики"

для студентов всех форм обучения специальности "Экономическая кибернетика"

Протокол № 2 від 14.09.04

Утверджено кафедрой

“Экономическая кибернетика”

Харків 2004

Конспект лекций по курсу "Моделирование экономики" для студентов всех форм обучения специальности "Экономическая кибернетика" / Сост. Н.Б. Ивченко. – Харьков: ХНУРЭ, 2004 – 50с.

Составитель Н.Б. Ивченко


Вводная тема

1. Предмет, сущность и задачи дисциплины. Содержание курса, взаимосвязь с другими дисциплинами.

2. История развития экономико-математических методов (ЭММ) и моделей.

1. При подготовке менеджеров в США и других странах используются два направления:

1) Изучение отчетов о деятельности фирм (досье).

2) Изучение ЭММ и моделей.

В направлении 1 студенту надо за два часа изучить досье на фирму, например « Дженерал моторс » на 20 страницах и затем за 80 минут обсудить возможные направления деятельности фирмы и выбрать наилучшие. В направлении 2 используются банки моделей, статистические банки. В банке моделей находятся модели расчета цен на товары и услуги, модель месторасположения фирмы или торговой точки, модель разработки рекламного бюджета и др. Статистический банк – совокупность современных методик статистической обработки информации. Банк моделей - набор математических моделей, позволяющих принимать оптимальные управленческие решения. Эти методики и модели позволяют ответить на вопросы:

1) Какие виды деятельности необходимо развивать

2) Какие товары целесообразно выпускать

3) По каким переменным лучше всего сегментировать рынок?

4) Что произойдет с рынком, если цену товара поднять на 10 %, а расходы на рекламу увеличить на 20 % ?

5) Что представляют собой переменные, влияющие на сбыт

За последние годы разработано множество моделей, в основе которых лежат ЭММ.

Предметом дисциплины являются методология, методы и процессы экономико-математического моделирования.

Сущностью дисциплины является определение внутренних закономерностей экономических процессов и явлений. Это можно сделать с помощью моделей. Здесь остро встаёт вопрос об адекватности математической модели экономической структуры. Любая модель любого явления полагает абстрагирование от многих реальных свойств. Что же касается моделирования в экономике, то здесь реальный объект по своей сложности превосходит многие объекты физической природы. Вместе с тем проверка адекватности ЭМ модели с помощью единственного критерия истины – практики затруднена, так как экономический эксперимент связан зачастую с колоссальными затратами и поэтому не всегда возможен.

Некоторые модели хорошо зарекомендовали себя. В последнее время три математических теории является основным инструментом при исследовании экономических задач: линейное программирование, модели типа « затраты - выпуск » и теория производственных функций.

Целью дисциплины является формирование системы знаний по методологии, методике и инструментарию построения экономических моделей, их анализа и использования.

К задачам дисциплины относятся изучение теории и получение практических навыков моделирования и анализа экономических объектов и процессов на макро-, мезо- и микроэкономических уровнях.

Данный курс связан с дисциплинами математического цикла и экономического цикла.

2. Первую экономическую модель в экономике сформулировал в 16-17 в.в. французский ученый, придворный врач Франсуа Кенэ. Кенэ долго размышлял над распределением в обществе труда и доходов. Он вычертил схему, которая вошла в историю под именем « Зигзаг доктора Кенэ » и « Арифметическая формула ».

Настоящим первооткрывателем математической экономики в Европе признается французский экономист Антуан Огюстен Курно, который в 1838 году предложил математический аппарат фирмы, показал спрос как падающую функцию цены. А.О. Курно написал книгу « Исследование о математических принципах теории багатств ».

В 1847 году в Лозанне вышла книга Леона Вальраса, в которой он писал

«Чистая теория экономики есть наука, напоминающая во всем физико-математические науки». Леон Вальрас разработал теории общего конкурентного равновесия и построил обобщенную модель капиталистической экономики.

Необходимо отметить работы по моделировапнию экономики В. Леонтьева, Дж. Фон Неймана, В. Парето, Э. Энгела, Ф. Эджворта.

Василий Леонтьев (1906-1999 г.г.) - американский экономист, русский по происхождению. Основоположник направления, названого им методом « затраты – выпуск » или по отечественной терминологии, метода межотраслевого баланса. Получил Нобелевскую премию.

Дж. Фон Нейман (1903 – 1957 г.г.) - американский математик, выходец из Венгрии. Разработал логические основы ЭВМ и автоматов, построил вместе с О. Моргенштерном теорию игр. Известна его математическая модель «расширяющейся » экономики.

В. Парето (1848 – 1927 г.г.) - итальянский экономист и социолог. В 1897 году он изобрел формулу, что блага распределяются неравномерно, разработал принцип многоцелевой « оптимальности ».

Немец Э. Энгель придумал теории функций спроса и эластичности показателей.

Англичанин Ф. Эджворт предложил кривые безразличия.

В конце 19 века в Европе и США получили большое развитие статистические исследования (из нужд астрономии для устранения ошибок в наблюдениях) и возник метод наименьших квадратов, регрессивный анализ (из нужд биологии). Они вошли важной составной частью в эконометрию.

Среди отечественных ученых, внесших значительный вклад в ЭМ моделирование необходимо назвать Е.Е. Слуцкого, Л.В. Канторовича, В. С. Немчинова, Н. П. Федоренко, Г. А. Аганбегяна.

В 1939 году свершилось событие, которое сначала никем не было замечено, но потом отозвалось во всем мире. Молодой профессор Ленинградского университета Л.В. Канторович (1912 – 1986 г.г.) надумал применить математические приемы к решению производственных задач. Такие задачи ему предложил существующий тогда Фанерный трест. Как раскроить фанерные листы с минимальными отходами, как распределить работу по станкам, чтобы результаты были максимальными? Результаты были поразительны. Математический расчет предлагал единственный наиболее эффективный вариант использования ресурсов.

В 1958 году будущий академик В. С. Немчинов создал первую в стране ЭМ лаборатори. В 1963 г. на базе лаборатории Немчиновым был организован Центральный ЭМ институт. Директором был назначен Н. П. Федоренко, впоследствии академик. В Новосибирске был создан Институт экономики и организации промышленного производства АН СССР, который возглавил академик Г.А.Аганбегян.

Ниже приведены данные об отечественных ученых, внесших наибольший вклад в моделирование экономики.

Слуцкий Евгений Евгеньевич (1880 – 1948 г.г.) - советский математик, экономист и статистик, работал в областной теории спроса и потребления, вывел « уравнение Слуцкого » (характеризующее зависимость между изменением цен на отдельные товары и доходов потребителей с одной стороны, и структурой покупки спроса с другой).

Канторович Леонид Витальевич (1912 – 1986 г.г.) - советский математик и экономист, внес вклад в развитие ценообразования, теории эффективности капиталовложений, а также развития ВТ. Лауреат Нобелевскую премии по экономике.

Немчинов Василий Сергеевич (1894 – 1964 г.г.) – основоположник ЭМ направления науки в стране, руководил работами по межотраслевым балансам страны и регионов.

Аганбегян Абел Газевич (р. 1932 г.), академик, основные труды по проблемам производительности труда, отраслевой оптимизации.

Фельдман Григорий Александрович (1884 – 1958 г.г.), советский экономист, создал первую динамическую модель экономического роста.

Федоренко Николай Прокофьевич (р. 1917 г.) академик, советский экономист, организатор и директор ЦЭМИ до 1985 года, работал в области общих проблем применения ЭММ в народном хозяйстве.


Тема: Классификация ЭММ и моделей

Классификационная схема ЭММ и моделей

Понятие модели, виды моделей

ЭМ методы – обобщающее название дисциплин, находящихся на стыке экономики, математики и кибернетики, введенное В. С. Немчиновым в начале 60-х годов 20 в. Общепринятой классификации ЭММ и моделей нет, на рис. 2.1

Приведена примерная классификация ЭММ и моделей.

Рассмотрим схему ЭММ и моделей:

1. Математическая статистика – раздел прикладной математики, основанный на выборке изучаемых явлений.

2. Математическая экономика и эконометрия – науки, занимающиеся проверкой экономических теорий на фактическом материале с использованием математической статистики и математических моделей.

Эконометрия – наука изучающая конкретные количественные закономерности и взаимосвязи экономических объектов и процессов с помощью математических и математико-статических методов и моделей.

Математическая экономика – наука, изучающая те же вопросы, что и эконометрия, только без статистической конкретизации экономических параметров, в виде общих экономических зависимостей.

Математической экономикой – называют прикладную часть математической экономики.

Производственные функции – ЭМ уравнения связывающие переменные величины затрат с величинами продукции, применяется в макроэкономических расчетах и на уровне предприятий.

Межотраслевой баланс – каркасная модель экономической таблицы, в которой показываются многообразные натуральные и стоимостные связи в народном хозяйстве (за рубежом называют методом « затраты - выпуск »).

Теория экономического роста – позволяет моделировать общее и социальное развитие стран в целом.

Региональный анализ – исследует уровни экономического развития регионов, их специализации, отраслевые структуры.

Пространственный анализ – исследует размещение населенных центров в связи с их экономическим значением, сферой сбыта продукции. Отрасли делятся на пространствоемкие (сельское хозяйство, рыболовство), точечные (обрабатывающая промышленность), сокращающая расстояние (транспорт и связь).

3. Экономическая кибернетика рассматривает применение общих законов кибернетики в изучении экономических явлений (системный анализ экономики, теория экономической информации).

Системный анализ экономики – рассматривает экономические объекты как систему, главный инструмент – модель изучаемой системы.

Теория экономической информации - рассматривает процессы происходящие в экономике, только с информационной стороны, рационализацию потоков экономической информации, ее полезность.

4. Методы принятия оптимальных решений (теория игр, массового обслуживания, управления запасами и др.).

2. Модель – понятие, которое определить трудно. В одной работе было перечислено 31 определение. Это понятие знакомо каждому: игрушечный самолет – модель самолета. Фотоснимок пейзажа – это модель местности,

s = vt (путь = скорость * на время, модель движущегося тела, математическая модель).

Модели могут быть более или менее точные, более или менее простые или сложные, материальные (вещественные) и знаковые (например, графические).

Материальные модели – модели гидроэлектростанций, воспроизводящие реку, горы;

Термин «модель» происходит от латинского слова «modulus» - образец Моделью некоторого объекта, явления называется исскуственная система или объект, которые в определенных условиях могут заменить оригинал путем воспроизведения свойств и характеристик оригинала.

Модель есть вспомогательным средством, которое в определенной ситуации заменяет оригинал при исследовании его свойств. Различают модели следующих видов

1) физические (внешнего подобия),

2) схематические (графические),

3) словесные (вербальные),

4) математические.

Математические модели являются наиболее абстрактными.

Под ЭМ моделями понимаются математические модели, применяемые для решения экономических задач и описания экономических процессов или явлений. ЭМ модели бывают

1 теоретико-аналитические и прикладные,

2 общие и частные,

3 непрерывные и дискретные,

4 статические и динамические,

5 детерминированные и стохастические,

6 матричные и др.

Большое значение в экономики имеют оптимизационные модели. Они состоят из целевой функции или критерия оптимальности и ограничений.

Целевая функция – (или функция цели, название оптимизируемой функции) – функция, оптимум которой требуется найти

ƒ (х) opt (max, min).

Критерий оптимальности – признак, характеризующий качество принимаемого решения.

К = opt ƒ (х), x є X.

Ограничения выражаются равенствами и неравенствами

Важное свойство ЭМ моделей – их применимость к разным

ситуациям. Например выпуск продукции и внесение удобрений можно описать одинаковой моделью.


Лекция 3 Тема: Этапы экономико - математическогомоделирования

1. Анализ этапов экономико-математического моделирования.

2. Вербально-информационное описание как начальный этап моделирования.

3. Модели мировой динамики.

1. Процесс моделирования, в том числе и экономико-математического, включает в себя три структурных элемента: объект исследования; субъект (исследователь); модель, опосредующую отношения между познающим субъектом и познаваемым объектом. Рассмотрим общую схему процесса моделирования, состоящую из четырех этапов.

Пусть имеется некоторый объект, который мы хотим исследовать методом моделирования. На первом этапе мы конструируем (или находим в реальном мире) другой объект – модель исходного объекта-оригинала. Этап построения модели предполагает наличие определенных сведений об объекте-оригинале. Познавательные возможности модели определяются тем, что модель отображает лишь некоторые существенные черты исходного объекта, поэтому любая модель замещает оригинал в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько моделей, отражающих определенные стороны исследуемого объекта или характеризующих его с разной степенью детализации.

На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования.

На пример, одну из форм такого исследования составляет проведение модельных экспериментов, при которых целенаправленно изменяются условия функционирования модели и систематизируются данные о ее поведении. Конечным результатом этого этапа является совокупность знаний о модели в отношении существенных сторон объекта-оригинала, которые отражены в данной модели. Третий этап заключается в переносе знаний с модели на оригинал, в результате чего мы формируем множество знаний об исходном объекте и при этом переходим с языка модели на язык оригинала. С достаточным основанием переносить какой-либо результат с модели на оригинал можно лишь в том случае, если этот результат соответствует признакам сходства оригинала и модели (другими словами, признакам адекватности).

На четвертом этапе осуществляются практическая проверка полученных с помощью модели знаний и их использование как для построения обобщающей теории реального объекта, так и для его целенаправленного преобразования или управления им. В итоге мы снова возвраща­емся к проблематике объекта-оригинала.

Моделирование представляет собой циклический процесс, т. е. за первым четырехэтапным циклом может после­довать второй, третий и т. д. При этом знания об исследуемом объекте расширяются и уточняются, а первоначально построенная модель постепенно совершенствуется. Таким образом, в методологии моделирования заложены большие возможно­сти самосовершенствования.

Перейдем теперь непосредственно к процессу экономико-математического моделирования, т. е. описания экономических и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппаратом и средствами моделирования. Поэтому целесообразно более детально проанализировать последовательность и содержание этапов экономико-математического моделирования, выделив следующие шесть этапов: постановка экономической проблемы, ее качественный анализ; построение математической модели; математический анализ, модели; подготовка исходной информации; численное решение; анализ численных результатов и их применение. Рассмотрим каждый из этапов более подробно.

1. Постановка экономической проблемы и ее качествен­ ный анализ. На этом этапе требуется сформулировать сущность проблемы, принимаемые предпосылки и допущения. Необходимо выделить важнейшие черты и свой­ства моделируемого объекта, изучить его структуру и взаимосвязь его элементов, хотя бы предварительно сформулировать гипотезы, объясняющие поведение и развитие объекта.

2. Построение математической модели. Это этап формализации экономической проблемы, т.е. выражения ее в виде конкретных математических зависимостей (функций, уравнений, неравенств и др.). Построение модели подразделяется в свою очередь на несколько стадий. Сначала определяется тип экономико-математической модели, изучаются возможности ее применения в данной задаче, уточняются конкретный перечень переменных и параметров и форма связей. Для некоторых сложных объектов целесообразно строить несколько разноаспектных моделей; при этом каждая модель выделяет лишь некоторые стороны объекта, а другие стороны учитываются агрегировано и приближенно. Оправдано стремление построить модель, относящуюся к хорошо изученному классу математических задач, что может потребовать некоторого упрощения исходных предпосылок модели, не искажающего основных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация проблемы приводит к неизвестной ранее математической структуре.

3. Математический анализ модели. На этом этапе чисто математическими приемами исследования выявляются общие свойства модели и ее решений. В частности, важным моментом является доказательство существования решения сформулированной задачи. При аналитическом исследовании выясняется, единственно ли решение, какие переменные могут входить в решение, в каких пределах они изменяются, каковы тенденции их изменения и т. д. Однако модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию; в таких случаях переходят к численным методам исследования.

4. Подготовка исходной информации. В экономических задачах это, как правило, наиболее трудоемкий этап моделирования, так как дело не сводится к пассивному сбору данных. Математическое моделирование предъявляет жесткие требования к системе информации; при этом надо принимать во внимание не только принципиальную возможность подготовки информации требуемого качества, но и затраты на подготовку информационных массивов. В процессе подготовки информации используются методы теории вероятностей, теоретической и математической статистики для организации выборочных обследований, оценки достоверности данных и т.д. При системном экономико-математическом моделировании результаты функционирования одних моделей служат исходной информацией для других.

5. Численное решение. Этот этап включает разработку алгоритмов численного решения задачи, подготовку программ на ЭВМ и непосредственное проведение расчетов; при этом значительные трудности вызываются большой размерностью экономических задач. Обычно расчеты на основе экономико-математической модели носят многовариантный характер. Многочисленные модельные эксперименты, изучение поведения модели при различных условиях возможно проводить благодаря высокому быстродействию современных ЭВМ. Численное решение существенно дополняет результаты аналитического исследования, а для многих моделей является единственно возможным.

6. Анализ численных результатов и их применение. На этом этапе прежде всего решается важнейший вопрос о правильности и полноте результатов моделирования и применимости их как в практической деятельности, так и в целях усовершенствования модели. Поэтому в первую очередь должна быть проведена проверка адекватности модели по тем свойствам, которые выбраны в качестве существенных (другими словами, должны быть произведены верификация и валидация модели). Применение численных результатов моделирования в экономике направлено на решение практических задач (анализ экономических объектов, экономическое прогнозирование развития хозяйственных и социальных процессов, выработка управленческих решений на всех уровнях хозяйственной иерархии).

Перечисленные этапы экономико-математического моделирования находятся в тесной взаимосвязи, в частности, могут иметь место возвратные связи этапов. Так, на этапе построения модели может выясниться, что постановка задачи или противоречива, или приводит к слишком сложной математической модели; в этом случае исходная постановка задачи должна быть скорректирована. Наиболее часто необходимость возврата к предшествующим этапам моделирования возникает на этапе подготовки исходной информации. Если необходимая информация отсутствует или затраты на ее подготовку слишком велики, приходится возвращаться к этапам постановки задачи и ее формализации, чтобы приспособиться к доступной исследователю информации.

Выше уже сказано о циклическом характере процесса моделирования. Недостатки, которые не удается исправить на тех или иных этапах моделирования, устраняются в последующих циклах. Однако результаты каждого цикла имеют и вполне самостоятельное значение. Начав исследование с построения простой модели, можно получить полезные результаты, а затем перейти к созданию более сложной и более совершенной модели, включающей в себя новые условия и более точные математические зависимости.

2. Для создания модели системы необходимо сначала дать ее вербально-информационное описание, (слово вербальный означает «словесный» от лат. “verbalis”)

Его составные описывают:

1) внешнюю среду;

2) связи системы с внешней средой;

3) элементарный состав системы, ее части, которые могут рассматриваться как системы меньшего размера;

4) описание связей между элементами системы и ПС или главные связи между элементами и ПС, если нельзя дать все связи;

5) действие системы..

Некоторые части описания могут быть неполными. Иногда (если система сложная) моделирование оканчивается вербальным описанием. Если вербальная модель удачная, то она позволяет принимать эффективные решения, решать разные проблемы, разрабатывать способы управления системой.

3.Использование численных математических методов моделирования позволило создать модели мировой экономики. Так как ресурсы Земли ограничены, то интересной является проблема исследования возможных последствий экономического роста. Эта проблема тесно связана с экономическими факторами.

Американский ученый Дж. Форрестер предложил модель мировой динамики. Интегральная выходная величина модели – индекс материального роста жизни

M = C/P * N(1-a),

где С – суммарный капитал, (инвестиции в промышленность),

Р – численность населения;

N – наличие природных ресурсов;

a – индекс сельскохозяйственного капитала.

Все переменные здесь есть усредненными величинами по всему миру.

Взаимосвязь переменных описывалась системой из 20 нелинейных уравнений. Использовалось имитационное моделирование.

Результаты оказались неутешительными:

1) если мир не изменится, то качество жизни будет снижаться после max в 70-е годы.

2) увеличение капиталовложений в промышленность вызовет загрязнение окружающей среды.

3) некоторое стабильное состояние можно достичь, если уменьшить капиталовложения в промышленность, рождаемость и пользование природных ресурсов.

Исследования мировой динамики продолжил Д.Медоуз. Его модель характеризуется величинами:

1 – наличие ресурсов;

2 – объемом производства продуктов питания на душу населения;

3 – численность населения;

4 – объемом промышленной продукции на душу населения;

5 – уровнем загрязнения окружающей среды;

6 – общим темпом смертности;

7 – общим темпом рождаемости;

8 – объемом производства услуг на душу населения(за год).

Процесс построения модели включал 4 этапа.

1) определение связей между 8 характеристиками системы;

2) составление зависимостей между характеристиками;

3) компьютерный расчет общего поведения этих зависимостей во времени;

4) исследования влияния на глобальную систему различных стратегий развития.

Согласно этой модели производство продуктов питания и численностъ населения растут, пока их не затормозит быстрое снижение ресурсных запасов. Загрязнения природной среды и численность населения растут после пика промышленного развития настолько, что вызовут экономическую, демографическую и экологическую катастрофу.

Чтобы убрать крах мировой системы, в модель последовательно вводили 4 стратегии технического прогресса:

1) широкое использование ядерной энергетики, чтобы удвоить ресурсы, переработка отходов. 2) контроль загрязнения природной среды. 3) увеличение продуктивности земли в 2 раза. 4) контроль за рождаемостью. Однако моделирование показало, что даже при одновременном использовании всех 4 стратегий уменьшается производство продуктов питания и промышленной продукции на душу населения.

Тогда разработали стабилизирующую стратегию, которая включала следующие предложения:

1) идеальный контроль за рождаемостью (2-е детей в семье);

2) увеличение амортизационных отчислений;

3) переработка вторичных ресурсов, контроль над состоянием окружающей среды, увеличение сроков службы всех видов капитала, обновление эрозийных земель.

Эти мероприятия должны были быть введены ещё в 1975г., иначе выход мира до стабильного состояния будет невозможен.

Эти выводы вызвали оживленную дискуссию. К критическим мнениям относились: сильная агрегированность модели, игнорирование больших различий между регионами Земли.

Другие модели были вообще необъяснимыми.

В научных кругах модели мировой динамики вызвали "футурошок" т.е.


Тема:Моделирование экономических функций

1 Функция издержек

2 Функция спроса

3 Функция предложения

4 Функция полезности

1. Анализ издержек содержит изучение влияния издержек производства на объем производства и другие ТЭ показатели.

Чаще всего рассматривается функция вида:

Z=F(x)+Σbivi, i=1,n,

где Z - суммарные издержки;

x- количество продукции;

vi - другие условия, отражают различную структуру ОПФ, разные условия производства, разную организацию труда в различных отраслях.

Поделим обе части на X

,

где - удельные издержки.

Отвлечемся от влияния факторов, что, возможно при изучении издержек в общегосударственных масштабах. Тогда

Линейная функция издержек имеет вид:

Функция удельных издержек будет убывающей. Параметры можно интерпретировать с помощью предельных величин

фактор ∆Vi при неизменных уровне выпуска продукции увеличивает издержки на ∆Z,

Если ∆Vi=1, то ∆Z=bi..

Когда Viвыражает какой- то процесс или такое изменение организационной структуры, при котором издержки должны снизится, то biдолжно иметь отрицательный знак.

2. Функция спроса выражает зависимость спроса от экономических (доходы, цены) и внешнеэкономических (потребительские привычки) факторов. Функции спроса могут быть как макроэкономическими, если охватывают всю сферу потребления и микроэкономическими описывающими спрос индивидуальных потребителей.

D (p) - функция спроса или просто спрос (по англ. “demand” - спрос)(количество товара покупаемого на данном рынке за единицу времени по цен Р за единицу). Фундаментальное свойство функции спроса выражает следующая аксиома: функция спроса является убывающей, при увеличении цены величина спроса на товар уменьшается к 0, при уменьшении цены товара величина спроса увеличивается.

Рассмотрим следующие функции спроса:

а) линейно убывающая

б) обратная

D (p)=1/p, р>0,

в) логарифмическая

D (p)=ln (1+p)/p,p>0.

При изменении условий на рынке или вне его функция спроса может изменится, тогда говорят об изменении спроса. Изменение спроса надо отличать от изменения величины спроса при передвижении по графику данной функции спроса. Например, при повышении цен на бензин вполне может повысится спрос на велосипеды. Это означает, что вся кривая спроса передвинется вправо.

Рассмотрим математические характеристики кривой спроса и их экономические иллюстрации. Производная функции спроса по цене

показывает насколько изменится величина спроса при изменении цены товара на 1 ед. Т.к. функция спроса убывающая, то эластичность спроса по цене показывает на сколько % изменится величина спроса при изменении цены товара на 1 %.

Обозначается эластичность

3. S(p) - функция предложения или предложение (от англ.“supply”- предложение)(количество товара поставляемого на данный рынок за единицу времени при цене р за ед. товара). Функция предложения является возрастающей. Аксиома предложения: при увеличении цены величина предложения товара неограниченно увеличивается, при уменьшении цены величина предложения уменьшается, приближаясь к 0.

Различают функции предложения

а) линейно возрастающая

S (p) = - C + dp,,

б) степенная

,

в) логарифмическая

При изменении условий на рынке или вне него функция предложения может изменится, тогда говорят об изменении предложения. При открытии поблизости месторождения алмазов может увеличится предложение необработанных алмазов а возможно через некоторое время - ювелирных украшений.

Рассмотрим математические характеристики кривой предложения и их экономические иллюстрации.

Производная функции по цене

показывает насколько изменится величина предложения при изменении цены товара на 1 ед. Т.к. функция предложения возрастающая, то

Эластичность предложения по цене показывает на сколько % изменится предложение при изменении цены товара на 1 %. Обозначается эластичность

Рассмотрим:

;

б) ;

;

4 Система предпочтений индивида указывает, какой из двух наборов предпочтительнее для него. Во многих случаях, однако, весьма желательно и удобно оцени вать привлекательность набора товаров количественно , приписать каждому набору X из пространства товаров С какое-то число и(Х ). Получается функция и: С R . Главное требование к такой функции, чтобы она отражала отношение (слабого) предпочтения на С, т.е. удовлетворяла условиям:

и(Х) < u { Y ), если и только если X < Y

и(Х) = u ( Y ), если и только если X ~ Y , значит и

и(Х) < и(У), если и только если Х< Y .

Такая функция называется функцией полезности. Видно, что функция полезности постоянна на каждом классе равноценности, так что ее и вполне правильно представлять себе как функцию, "пересчитывающую" классы равноценности в сторону все большего предпочтения наборов товаров.

Работать с функцией полезности гораздо удобнее, чем с системой.Однако математики выяснили, что если на систему не накладывать никаких ограничений, кроме уже рас­смотренных ранее, а именно, транзитивность, совершенность и рефлексивность, то функции полезности может и не существовать. Тем не менее при некоторых естественных условиях, наложенных на систему функция полезности существует.

Теперь можно сформулировать условия, при которых существует функция полезности.

ТеоремаЕсли система предпочтений непрерыв­на, то существует непрерывная функция полезности.

Рис.4.1

Надо отметить, что функцияполезности, если она существует, не определяется единственным образом (рис.4.1).

Основные свойства функции полезности вытекают из ее связи и подчиненности системе предпочтений. Функция полезности неубывающая и дифференцируема.

Состояние рынка, при котором спрос равен предложению называется равновесным, а цена, при которой достигается равенство с проса и предложения -называется р ав новесной ценой

ТеоремaПусть функции спроса и предложения непрерывны и,D(р 0) > S(p 0) при некоторой цене р 0 ; тогда существует состояние равновесия.


Тема: Типы производственных функций и их свойства

1. Типы производственных функций

2. Предельный анализ факторов и однородность производственных функций

3. Эластичность производственных функций

4. Замещение факторов в производственных функциях

5. Производственная функция Кобба-Дугласа

1. Производственные функции можно разделить по количеству используемых переменных, по виду функций и по их свойствам.

Под производственной функцией понимают уравнение, связывающее выпуск продукции и затраты. Производственные функции по количеству переменных различают:

Однофакторные: или ;

Двухфакторные: ;

Многофакторные.

По аналитическому виду:

А) линейные производственные функции

.

Здесь параметры и выражают производительность факторов и , то есть показывают абсолютный прирост производства, когда один фактор остается неизменным, а другой возрастает на единицу. Линейные функции часто используются в краткосрочных и среднесрочных экономических моделях.

б) степенные производственные функции

Параметры и выражают эластичность уровня производства по отношению к факторам и , то есть показывают относительный прирост продукции, связанный с относительным приростом и .

Объем трудовых ресурсов в натуральном количестве,

Число рабочих, число человеко-дней,

Выпуск продукции в стоимостном или натуральном виде.

в) более сложные производственные функции CES

,

где - параметр, выражающий эластичность замены ОФ и занятости.

2. Предполагается, что производственные факторы удовлетворяют аксиоме. Существует подмножество производства страны затрат, называемое экономической областью , в которой увеличение любого вида затрат не приводит к уменьшению выпуска. Если - две точки этой области, то влечет .

Эта аксиома утверждает, что производственные факторы не какая-то совершенно абстрактная функция, придуманная теоретиками - математиками.

Она отражает утверждение, пусть и не на всей своей области определения, а только на ее части: в мало-мальски разумной экономике увеличение затрат не может привести к уменьшению выпуска.

В дифференциальной форме это выражается в том, что в этой области первые частные производные функции неотрицательны: - непрерывная и дифференцируемая

Эти производные называются предельными продуктами.

Можно составить производственные функции данного производства даже ничего не зная о производстве. Надо только поставить у возможного производства счетчик (человека на какое-то автоматическое увеличение), который будет фиксировать увеличиваемые ресурсы и - количество продукции, которую производство произвело. Если накопить достаточно много такой статической информации, учесть работу производства в различных режимах, то можно прогнозировать выпуск продукции, зная объем ввезенных ресурсов, а это и есть производственная функция.

3 Понятие «однородность производственной функции» включает в себя следующее ее свойство: равномерное увеличение всех производственных факторов вызывает пропорциональное увеличение продукта. Выразим это математически:

Функция однородна в степени h. если

Таким образом, когда каждая независимая переменная принимает значения , значение функции возрастает в раз.

Величина показывает степень использования производственных факторов или их эффективность. В случае, когда , эффективность производственных факторов будет равна 1, при говорят, что производственные факторы обладают растущей эффективностью и соответственно при эффективность факторов снижается

4. Эластичностью экономического показателя называется его способность реагировать в большей или меньшей степени на изменение другого показателя.

Определим эластичность объема производства по некоторому фактору как отношение темпов прироста к темпам прироста этого фактора.

Рассчитаем коэффициент эластичности по основным фондам :

;

;

;

Здесь - непрерывная дифференцируемая функция по .

Так как на практике это условие выполняется редко, то коэффициент эластичностьи часто выражается через приросты.

;

Пусть , тогда

Равен относительному изменению .

;

Коэффициент эластичности показывает как изменяется (в %) величина , если величина возрастает на 1%.

Если коэффициент эластичности в какой-нибудь точке равен 1, то относительная и предельная величины равны друг другу. Это выполняется в точках, в которых относительная величина достигает минимума или максимума.

Иногда экономические показатели характеризуются коэффициентом эластичности. Если , то говорят, что экономический показатель эластичен по ; если , то говорят, что экономический показатель абсолютно эластичен.

Так как производственная функция содержит несколько факторов, то следует исследовать эластичность по всем факторам. Вводится понятие частной эластичности.

Для функции параметры и являются частными коэффициентами эластичности.

4. Понятие замещения основывается на предположении, что производственные факторы могут заменять друг друга, и показывает, как при неизменной величине продукта можно изменять соотношения между факторами. Для можно поставить вопрос, насколько должно измениться число занятых при некотором изменении объема ОПФ, чтобы величина произведенного продукта осталась неизменной. Оценка замещения и определяется как отношение двух предельных величин и называется предельной нормой замещения.

или .

Например, если единичное изменение увеличивает на 6 единиц, а единичное изменение увеличивает на 3 единицы, можно сказать, что остается неизменным, если при росте на одну единицу число занятых увеличивается на 2 единицы. В этом случае

Различают ПФ (рис. 5.2, а и б).


а) Пф с взаимозаменяемыми факторами

б) Пф с дополняющими факторами

На рисунке изображены изокванты производственных функций. Каждая точка показывает значение продукта, произведенного с помощью комбинации факторов . Множество этих точек лежит на поверхности, называемой поверхностью производственных функций. Пересечение этой поверхности с плоскостями, параллельными плоскости , образуют кривые, называемые изоквантами. Каждая точка на этих кривых дает комбинацию производственных факторов, соответствующих одинаковому значению производственных функций.

Если производственные факторы можно заменять лишь в фиксированных пропорциях, то говорят, что производственные функции обладают нулевой предельной нормой замены.

5. ПФ Кобба-Дугласа (CDPF) принадлежит к наиболее известным, широко применяемым ПФ.

Ученые Дуглас и Кобб предприняли попытку оценить значения , используя данные по американской обрабатывающей промышленности за период с 1899 по 1922 года – индекс производства , индекс основного капитала , индекс труда . Они пришли к выводу, что

(таким образом имеет место неизменный эффект масштаба). С тех пор формула

для которой называют функцией Кобба-Дугласа. Функция наиболее часто используемая претерпела изменения

,

где - темп научно-технического прогресса. При

Предположим, что каждый производственный фактор вырос на %, тогда значения этих факторов будут равны:

Величина конечного продукта вычисляется:

;

При конечный продукт возрастает больше чем на r%, при - меньше, чем на %, а при - на %.

Частные коэффициенты эластичности равны

; .

Прологарифмируем CDPF

Производственная функция имеет линейный вид.

.

,

то есть при увеличении каждого производственного фактора на % выпуск продукции увеличивается на %.


Тема: Модели типа «затраты – выпуск» В. Леонтьева

План

1. Статическая модель «затраты – выпуск» В. Леонтьева

2. Элементарная теория статической модели «затраты – выпуск»

3. Этапы построения модели «затраты – выпуск»

1 Рассмотрим обобщенную модель некоторой экономической системы (ЭС)


Рассмотрим выбранное описание.

Внешней средой является природа, общество и других экономических систем. На вход подаются ресурсы: природные, трудовые, интеллектуальная информация, капиталы и тому подобное. Экономическая система состоит из ПС производства продукции и ПС распределения. Часть валовой продукции используется для производства другой продукции, а часть используется для потребления, накопления и экспорта.

Например:

Потоки продукции, циркулирующие между экономическими системами, показаны на рис. 6.2.



Пусть - количество отраслей продукции,

Вектор валовой продукции (вектор выпуска),

Вектор конечной продукции,

Вектор промежуточной продукции (вектор затрат),

где - валовая продукция -й отрасли,

Конечная продукция -й отрасли,

Промежуточная продукция -й отрасли.

Экономическая система характеризуется матрицей А (производственная матрица).

где - количество продукции -й отрасли, которая затрачивается на производство единицы продукции -й отрасли (предполагается, что в каждой из отраслей производство осуществляется одним технологическим способом). Отрасли выпускают однородную продукцию.

Учитывая, что на производство валовой продукции всех видов затрагивается , , - межотраслевые потоки -й продукции, векторы и свяжем линейным уравнением:

Вид продукции 1 2 …….
1
2
……. ……. ……. ……. ……. …….

которую можно привести к виду

.

Если , то есть ЭС использует весь валовый продукт на собственные нужды, то такая экономика и ее модель называются закрытыми. Если вырабатывается хоть один вид, ненулевой конечной продукции, то экономика и ее модель называются открытыми.

Модель Леонтьева можно использовать для того, чтобы:

1) вычислить по заданному количеству конечной продукции () необходимое количество валовой продукции ().

2) При заданном уровне выпуска валовой продукции () вычислить сколько будет конечного продукта ().

3) Исследовать влияние изменения технологии на производство, то есть вычислить как влияют изменения на и .

Для удобства математического исследования модель записывают в векторно-матричной форме

или в виде ,

где - единичная матрица размера , ,

Символ Кронекера.

«дельта» а - производственная матрица ЭС.

С точки зрения общей теории управления задача 2) известна как задача наблюдения для модели, которая отображает процесс распределения валовой продукции.

Задача анализа

Задача синтеза

(показывает процесс планирования валовой продукции по заданному вектору конечной продукции ).

Существование единого решения такой системы связано с существованием обратной матрицы. Матрица называется обратной матрицей Леонтьева или матричным мультипликатором модели (сокращенно мультипликатором Леонтьева).

является матрицей коэффициентов полных затрат, так как экономическое объяснение ее элементов следующее: показывает потребность в валовой продукции -й отрасли для производства единицы конечной продукции -й отрасли.

Произведение матрицы на вектор конечного продукта равняется .

Решение задачи синтеза имеет вид:

,

Возникает вопрос относительно условий, при которых существует матрица , для любого неотрицательного вектора , вектор также неотрицателен. В этом случае матрица называется продуктивной. Матрица , называется неотрицательной, если все ее элементы неотрицательны. Матрица любой ЭС по определению должна быть неотрицательной.

Условия продуктивности неотрицательной матрицы:

1) maxсобственное число матрицы , - собственный вектор.

2) имеет неотрицательную обратную матрицу .

3) Матричный ряд

.

(ряд Неймана) матрицы сходится (при этом ).

4) последовательные главные миноры матрицы положительные.

С 3) выплывает, что решение задачи синтеза можно получить итерационно, вычисляя по формуле:

,

где приблизительное решение задачи , с номером - по предыдущему решению .

Поиск собственных чисел матрицы

где - собственный вектор.

Пример: Дана матрица

. Найти и

И связаны уравнением

Чтобы такая система уравнения имела ненулевое решение, ее определитель должен быть роавен 0.

;

;


Тема:Модели межотраслевого баланса

1. Балансовый метод.

2. Принципиальная схема межсекторного баланса.

3. Модель межсекторного баланса затрат труда.

1.В основе создания балансовых моделей лежит балансовый метод, т.е. метод взаимного сопоставления имеющихся материальных, трудовых и финансовых ресурсов и потребностей в них. Если вместо понятия продукт ввести более общее понятие ресурс, то под балансовой моделью следует понимать систему уравнений, которые удовлетворяют требованиям соответствия наличия ресурса и его использования. Примеры балансового соответствия, как соответствие наличия рабочей силы и количества рабочих мест, платежеспособного спроса населения и предложения товаров и услуг и т.д. При этом соответствие понимается либо как равенство, либо менее жестко – как достаточность ресурсов для покрытия потребности и, следовательно, наличие некоторого резерва.

Важнейшие виды балансовых моделей:

· статические;

· динамические;

· частные материальные, трудовые и финансовые балансы;

· межотраслевые балансы;

Балансовый метод и создаваемые на его основе балансовые модели служат основным инструментом поддержания пропорций в народном хозяйстве. Для выявления диспропорций используется балансовые модели, в которых фактические ресурсы сопоставлялись бы с потребностью в них.

Основу информационного обеспечения балансовых моделей в экономике составляет матрица коэффициентов затрат ресурсов по конкретным направлениям их использования. Например, в модели межотраслевого баланса такую роль играет технологическая матрица. По многим причинам исходные данные реальных хозяйственных объектов не могут быть использованы в балансовых моделях непосредственно, поэтому подготовка информации для ввода в модель является весьма серьезной проблемой. Так, при построении модели межотраслевого баланса используется специфическое понятие чистой (или технологической) отрасли, т.е. условной отрасли, объединяющей все производство данного продукта независимо от ведомственной (административной) подчиненности и форм собственности предприятий и фирм. Переход от хозяйственных отраслей к чистым отраслям требует специального преобразования реальных данных хозяйственных объектов, например, агрегирования отраслей, исключения внутриотраслевого оборота и др. В этих условиях понятия «межпродуктовый баланс» и «межотраслевой баланс» практически идентичны, отличие заключается лишь в единицах измерения элементов баланса.

Балансовые модели относятся к тому типу экономико-математических моделей, которые называются матричными. В матричных моделях балансовый метод получает строгое математическое выражение.

2.Первый квадрант МОБ - это шахматная таблица межотраслевых материальных связей. Показатели, помещенные на пересечениях строк и столбцов, представляют собой величины межотраслевых потоков продукции и в общем виде обозначаются x ij , где i и j – соответственно номера отраслей производящих и потребляющих. Так, величина x 32 понимается как стоимость средств производства, произведенных в отрасли с номером 3 и потребленных в качестве материальных затрат в отрасли с номером 2. Таким образом, первый квадрант по форме представляет собой квадратную матрицу порядка n, сумма всех элементов которой равняется годовому фонду возмещения затрат средств производства в материальной сфере.

Во втором квадранте представлена конечная продукция всех отраслей материального производства, при этом под конечной понимается продукция, выходящая из сферы производства в область конечного использования (на потребление и накопление). В таблице этот раздел дан укрупнённо в виде одного столбца величин Y i ; в развернутой схеме баланса конечный продукт каждой отрасли показан дифференцированно по направлениям использования на личное потребление населения, общественное потребление, на накопление, возмещение потерь, экспорт и др. Итак, второй квадрант характеризует отраслевую материальную структуру национального дохода, а в развернутом виде - также распределение национального дохода на фонд накопления и фонд потребления, структуру потребления и накопление по отраслям производства и потребителям.

Третий квадрант МОБ также характеризует национальный доход, но со стороны его стоимостного состава как сумму чистой продукции и амортизации; чистая продукция понимается при этом как сумма оплаты труда и чистого дохода отраслей. Сумму амортизации (c i) и чистой продукции (v j +m j) некоторой j-й отрасли будем называть условно чистой продукцией этой отрасли и обозначатьвдальнейшем Z j .

Четвертый квадрант баланса находится на пересечении столбцов второго квадранта (конечной продукции) и строк третьего квадранта (условно- чистой продукции). Этим определяется содержание квадранта: он отражает конечное распределение и использование национального дохода. В результате перераспределения первоначально созданного национального дохода образуются конечные доходы населения, предприятий, государства. Данные четвертого квадранта важны для отражения в межотраслевой модели баланса доходов и расходов населения, источников финансирования капиталовложений, текущих затрат непроизводственной сферы, для анализа общей структуры конечных доходов по группам потребителей. общий итог четвертого квадранта, так же как второго и третьего, должен быть равен созданному за год национальному доходу.

Следует особо отметить, что хотя валовая продукция отраслей не входит в рассмотренные выше четыре квадранта, она представлена на принципиальной схеме МОБ в двух местах в виде столбца, расположенного справа от второго квадранта, и в виде строки ниже третьего квадранта. Эти столбец и строка валовой продукции замыкают схему МОБ и играют важную роль как для проверки правильности заполнения квадрантов (т.е. проверки самого баланса), так и для разработки экономико-математической модели межотраслевого баланса.

.

.

.

.

.

3.Рассмотрим баланс пр-ва и распределения продукции. Обозначим затраты живого труда в производстве j-го продукта через L j , а объем производства этого продукта (валовой выпуск), как и раньше, через X j . Тогда прямые затраты труда на единицу j-го вида продукции (коэффициент прямой трудоемкости) можно задать следующей формулой:

.

Введем понятие полных затрат труда как суммы прямых затрат живого труда и затрат овеществленного труда, перенесенных на продукт через израсходованные средства производства. Если обозначить величину полных затрат труда на единицу продукции j-го вида через T j , то произведения вида a ij T i отражают затраты овеществленного труда, перенесенного на единицу j-го продукта через i-e средство производства; при этом предполагается, что коэффициенты прямых материальных затрат а ij выражены в натуральных единицах. Тогда полные трудовые затраты на единицу j-го вида продукции (коэффициент полной трудоемкости) будут равны

.

Введем в рассмотрение вектор-строку коэффициентов прямой трудоемкости t=(t 1 , t 2 ,…,t n) и вектор-строку коэффициентов полной трудоемкости T=(T 1 , T 2 ,…,T n).

Тогда с использованием уже рассматриваемой выше матрицы коэффициентов прямых материальных затрат А (в натуральном выражении) систему уравнений можно переписать в матричном виде:

Произведя очевидные матричные преобразования с использованием единичной матрицы Е

Т -ТА = ТЕ -ТА = Т(Е -A) = t,

получим следующее соотношение для вектора коэффициентов полной трудоемкости:

Т = t(E -A) -1 .

Т = tB=t(I-A) -1 .

Обозначим через L величину совокупных затрат живого труда по всем видам продукции, которая с учетом формулы будет равна

Используя соотношения, приходим к следующему равенству:


Тема: Одноотраслевые динамические макроэкономические модели

1. Дискретная и непрерывная одноотраслевая динамические модели.

2. Открытая одноотраслевая динамическая модель.

3. Использование одноотраслевых динамических моделей.

1.Рассмотрим модель экономики, являющейся декомпозицией общей вербальной модели (рис. 8.1). Пусть ПС производства выпускает продукцию только одного вида (так называемая однопродуктовая или односекторная модель)

X t =W t +C t +A t +I t.

На рисунке показаны факторы, характеризующие производственный процесс:

L – трудовые ресурсы,

ОПФ – ОПФ или основной капитал,

N – природные ресурсы,

W – предметы труда, возвращенные в производство как часть валового продукта X.

В блоке распределения P x разделяется на W и конечный продукт Y. В блоке распределения Py разделяется на непроизводственное потребление C и инвестиции I. Инвестиции разделяются на амортизационные отчисления A и чистые инвестиции I 1.

В блоке V чистые инвестиции I 1 превращаются в прирост производственного капитала ΔK.

В модели рассмотрим взаимосвязи: x, y, L, I, I`, C. Предположим, что валовые инвестиции I в том же году полностью используются на прирост ОПФ и амортизацию.

В дискретном варианте эта связь имеет вид:

I t =qּΔK t +A t , (8.1)

где ΔK t = K t - K t -1 – прирост капитала в году t, q – коэффициент пропорциональности (параметр модели), At=μּK t – амортизационные отчисления,

μ – коэффициент амортизации,

K t – производств. капитал в году t.

В непрерывном варианте аналог уравнения (8.1) есть:

I(t)=q dK(t)/dt+μK(t).

Отсюда выведем уравнение движения капитала ,

Вернёмся к дискретному варианту:

x t = W t + y t ;

y t =I t +C t ;

Таккак I t =qΔK t +A t , то

x t =W t +y t =W t +I t +C t =W t +qΔK t +A t +C t ;

Если предположить, что промежуточные затраты W являются пропорциональными выпуску валовой продукции XW t = ax t , то

x t = ax t +qΔK t +μK t -C t ,

илиΔK t =(1/q)[(1-a)x t -μK t -C t ] – дискретная однопродуктовая динамическая модель. Здесьa – коэффициент производственных затрат.

В непрерывном варианте:

K`(t)=(1/q)[(1-a)x(t)-μK(t)-C(t)] – непрерывная однопродуктовая динамическая модель.

2.Предположим, что все валовые инвестиции I направлены на введение в действие новых ОПФ (основной производственный капитал не изнашивается), при этом прирост выпуска продукции

Δx t = x t +1 -x t ,

пропорциональный инвестициям

ν – коэффициент использования инвестиций,

a – коэффициент производственных затрат.

xt=axt+νΔxt+Ct;

В непрерывном варианте эта модель имеет вид

x(t)=ax(t)+ν dx(t)/dt+C(t).

3.Рассмотренные динамические модели односекторной экономики могут быть использованы для разных целей. С одной стороны на их основе можно создавать более сложные, но и более реальные многосекторные модели. С другой стороны их можно использовать для поиска путей наилучшего развития экономики. Это приводит к задачам оптимального управления.

Из непрерывной однопродуктовой динамической модели

K`(t)=(1/q)[(1-a)x(t)-μK(t)-C(t)],

можно записать:

x(t)=ax(t)+qK`(t)+μK(t)+C(t).

Наилучшим путем развития экономики на отрезке времени , t 1

,

где C(t) – непроизводственное потребление,

D(t) – функция дисконтирования, которая изображает меру предпочтений потребления продукции в данный момент времени t, по сравнению с другим моментом времени.

Выпуск продукции x(t) ограничивается производственными возможностями, которые определяются моментом времени t, капиталом K(t), трудовыми ресурсами L(t) и задаются функцией

X = F(t, K(t), L(t)),

которая является производственной функцией. Для всех t используется неравенство

0≤x(t) ≤F(t, K(t), L(t)),

Изменение капитала ограничено снизу

K(t) ≥ K min , t 0 ≤ t ≤ t 1 .

Кроме этого считается, что в начальный момент времени известен выпуск


1 Вітлінський В.В. Моделювання економіки: Навч. посібник. – К.: КНЕУ, 2003.- 408с.

2 Пономаренко О.І. Пономаренко В.О. Системні методи в економіці, менеджменті та бізнесі.: Навч.посібник. К.-Либідь,1995. - 240с.

3 Клебанова Т.С., Забродський В.О., Полякова О.Ю., Петренко В.Л. Моделювання економіки: Навч. посібник. – Харків: Видавництво ХДЕУ, 2001.-140 с., рос. мовою.

4 Бережна О.В., Бережной В.Г. Математичні методи моделювання економічних систем. Навч. посібник. – М.: Фінанси та статистика, 2001. – 368с., рос. мовою.

5 Хачатрян С.Р. Прикладні методи математичного моделювання економічних систем. Науково-метод. Посібник / Московська академія економіки та права. – М.: “Екзамен”, 2002. - 192с., рос. мовою.

6 Губин Н.М. и др. Экономико-математические методы и модели в планировании и управлении в отрасли связи: Учеб. пособие / Губин Н.М., Добронравов А.С., Дорохов Б.С. – М.: Радио и связь, 1993. –376с.

7 Малыхин В.И. Математическое моделирование экономики: Учебно-практическое пособие. - М.: Издательство УРАО, 1998. – 160с.

8 Экономико-математические методы и прикладные модели: Учеб. пособие для вузов/ В.В. Федосеев, А.Н. Гармаш, Д.М. Дайитбегов и др.; Под ред. В.В. Федосеева. – М.: ЮНИТИ, 1999. - 391с.

9 Лопатников Л.И. Популярный экономико-математический словарь – М.: Знание, 1990. – 256с.

10 Методичні вказівки до практичних занять з курсу "Економіко-математичні методи та системи в менеджменті" для студентів усіх форм навчання спеціальностей "Інформаційні системи в менеджменті", "Економічна кібернетика" / Упоряд. Н.Б. Івченко. – Харків: ХТУРЕ, 1999.- 40с.

Метод моделирования может применяться для исследования объектов любой природы, и с свою очередь любой объект в принципе может стать средством моделирования.

Все множество моделей принято делить на два больших вида: модели материальные (предметные) и модели идеальные (мысленные) . Первые воплощены в каких-либо материальных объектах, имеющих естественное или искусственное происхождение (отобранные в природе или созданные человеком для целей исследования); вторые являются продуктом человеческого мышления; операции с такими моделями осуществляются в сознании человека. В соответствии с этим различают две формы моделирования: материальное (если используются материальные модели) и идеальное моделирование (при использовании идеальных моделей).

В классе материальных моделей наиболее характерны физические модели. Они представляют собой материальные объекты той же природы, что и объект-оригинал. Подобие оригинала и модели в данном случае заключается в подчинении одним и тем же законам соответствующей области явлений. Физическое моделирование особенно распространено в технических науках.

В экономике физическому моделированию близко соответствует понятие реального (полевого) экономического эксперимента. Например, результаты эксперимента на одном предприятии (по вопросам совершенствования системы учета, планирования, финансирования, оплаты труда) переносятся на всю отрасль (на совокупность объектов близкой экономической природы). Но в экономике возможности физического моделирования (экспериментирования на реальных объектах) принципиально ограничены. Это объясняется тем, что изучение отдельных частей народного хозяйства не может дать полного и правильного представления об экономической системе в целом. Кроме того, проведение крупных реальных экспериментов требует больших затрат (ресурсов и времени) и связано с существенным риском.

В качестве других материальных моделей, применяемых в экономике можно назвать гидравлические модели. В этих моделях потоки воды имитируют потоки денег и товаров, а резервуары отождествляются с такими экономическими категориями как объем промышленного производства, объем личного потребления и т.д.

Были попытки создать модели экономических процессов на основе электрических схем (знаменитая модель «Эконорама», США). Однако эти и аналогичные им попытки создания экономических материальных моделей искусственной природы потерпели неудачу, т.к. они в лучшем случае имели демонстрационное применение, своей основной функции – быть средством получения новых знаний – эти модели выполнить были неспособны.

Таким образом, можно сделать вывод, что материальное моделирование экономических процессов и явлений непродуктивно.

По курсу

ОСНОВЫ МОДЕЛИРОВАНИЯ

И ПРОЕКТИРОВАНИЯ

ПРОЦЕССОВ»

Тема 1. Основы моделирования

Лекция 1. Введение в курс. Основы моделирования.

1.1. Цель и задачи курса.

Цель курса - приобретение навыков для:


  • оценки эффективности системы управления объектом, процессом, предприятием в целом;

  • принятия решения о необходимости замены либо совершенствования существующей системы;

  • правильной постановки задачи исполнителю;

  • квалифицированной экспертизы проекта;

  • обеспечения необходимых условий по реализации проекта.

Задачи курса- изучение следующих основных вопросов:


  • основные понятия, структура, принципы построения и характеристики систем управления объектами, технологическими процессами, производством в целом;

  • методы моделирования объектов и систем;

  • технико-экономические аспекты конструирования;

  • современные методы и средства конструирования и моделирования.

1.2. Понятия системы и модели.

Наблюдение, анализ и моделирование являются средствами познания и прогнозирования процессов, явлений и ситуаций во всех сферах объективной действительности. Наблюдения за явлениями природы, постановка экспериментов позволили установить физические законы. Эти законы проявляются в определенных количественных соотношениях между параметрами процесса или явления независимо от того, происходят ли они в действительности или их реализацию можно только представить.

Знание физических законов позволяет облечь их в ту или иную математическую форму, после чего, решая дифференциальные, алгебраические уравнения или производя другие вычисления, мы получим значения интересующих нас параметров или показателей.

В процессе моделирования очень важным является системное представление о рассматриваемом объекте (систематизация), первое и главное свойство которого - наличие цели, для реализации которой предназначается рассматриваемая совокупность предметов, явлений, логических представлений, формирующих объект. Цель функционирования системы редуцирует системные признаки, с помощью которых описываются, характеризуются элементы системы. При изменении цели другими могут стать как существенные системные признаки, так и связи с внешней средой.

Для выделения системы требуется наличие:


  • цели, для реализации которой формируется система;

  • объекта исследования, состоящего из множества элементов, связанных в единое целое важными, с точки зрения цели, системными признаками;

  • субъекта исследования (“наблюдателя”), формирующего систему;

  • характеристик внешней среды по отношению к системе и отражения ее взаимосвязей с системой.

Наличие субъекта исследования и некоторая неоднозначность, субъективность при выделении существенных системных признаков вызывают значительные трудности для однозначного выделения системы и соответственно ее универсального определения.

Изложенное выше дает возможность определить систему как упорядоченное представление об объекте исследования с точки зрения поставленной цели. Упорядоченность заключается в целенаправленном выделении системообразующих элементов, установлении их существенных признаков, характеристик взаимосвязей между собой и с внешней средой. Системный подход, формирование систем позволяют выделить главное, наиболее существенное в исследуемых объектах и явлениях; игнорирование второстепенного упрощает, упорядочивает в целом изучаемые процессы. Для анализа многих сложных объектов и ситуаций такой подход важен сам по себе, однако, как правило, построение системы служит предпосылкой для разработки или реализации модели конкретной ситуации или объекта.

Описанный подход предполагает ясность цели исследования и детерминированное к ней отношение всех элементов системы, взаимосвязь между ними и с внешней средой. Такие системы называют детерминированными.

Альтернативу представляют системы со стохастической структурой (случайной природы), когда либо отсутствует ясно выраженная цель исследования, либо по отношению к ней нет полной определенности, какие признаки считать существенными, а какие - нет; то же относится и к связям элементов системы с внешней средой.

Методы построения и исследования стохастических систем, как правило, более сложны, чем детерминированных. В некоторых случаях существуют способы сведения стохастических систем к специальным образом построенным детерминированным.

Структура и свойства модели зависят от целей, для достижения которых она создается. В этом органическое единство системы и модели. Если неизвестна цель моделирования, то неизвестно и с учетом каких свойств и качеств надо строить модель.

Модель определяется как формализованное представление об объекте исследования с точки зрения поставленной цели.

Различия между определениями системы и модели состоят в том, что систематизация предполагают лишь упорядочение, тогда как моделирование - формализацию взаимосвязей между элементами системы и с внешней средой.

Под моделированием понимается исследование объектов познания не непосредственно, а косвенным путем, при помощи моделей.

1.3. Типы моделей.

Модели можно различать по ряду признаков: характеру моделируемых объектов, сферам приложения, глубине моделирования, средствам моделирования. По последнему признаку методы моделирования делятся на две группы: материальное (предметное) и идеальное.

Материальное моделирование, основывающееся на материальной аналогии моделируемого объекта и модели, осуществляется с помощью воспроизведения основных геометрических, физических, других функциональных характеристик изучаемого объекта. Частным случаем материального моделирования является физическое моделирование, по отношению к которому, в свою очередь, частным случаем является аналоговое моделирование. Оно основано на аналогии явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими соотношениями. Пример аналогового моделирования - изучение механических колебаний с помощью электрической системы, описываемой теми же дифференциальными уравнениями. Так как эксперименты с электрической системой обычно проще и дешевле, она исследуется в качестве аналога механической системы.

Идеальное моделирование отличается от материального принципиально. Оно основано на идеальной, или мыслимой, аналогии. В экономических исследованиях это основной вид моделирования. Идеальное моделирование, в свою очередь, разбивается на два подкласса: знаковое (формализованное) и интуитивное.

Интуитивное моделирование встречается в тех областях науки, где познавательный процесс находится на начальной стадии или имеют место очень сложные системные взаимосвязи. Такие исследования называют мысленными экспериментами. В экономике до последнего времени в основном применялось интуитивное моделирование; оно описывает практический опыт работников.

При знаковом моделировании моделями служат схемы, графики, чертежи, формулы. Важнейшим видом знакового моделирования является математическое моделирование, осуществляемое средствами логико-математических построений.

1.4. Методы математического описания элементов и систем управления.

Анализ процессов, происходящих в системах, и эффективное решение задач расчета, проектирования и конструирования систем и устройств возможны лишь с применением языка и методов математики. Причем первым этапом при исследовании или конструировании системы является составление математического описания (математической модели) ее элементов и системы в целом.

Составление математического описания конструктивного элемента системы состоит из следующих последовательных процедур:


  • принятие исходных допущений;

  • выбор входных и выходных переменных;

  • выбор систем отсчета для каждой переменной;

  • применение физического, экономического или иного принципа, отражающего в математической форме закономерности протекания процесса.

Наиболее распространенной, а также наиболее общей и полной формой описания передаточных свойств систем (автоматических систем) и их элементов являются обыкновенные дифференциальные уравнения. Для большинства реальных элементов исходное уравнение, составленное строго в соответствии с законами физики, оказывается нелинейным. Это обстоятельство сильно усложняет все последующие процедуры анализа. Поэтому всегда стремятся перейти от трудно разрешимого нелинейного уравнения к линейному дифференциальному уравнению, обычно записываемого в символической или операторной форме, вида

(a 0 p n a 1 p n-1 . . . a n) y(t) = (b 0 p m b 1 p m-1 . . . b m) x(t), (1.1)

Где: x(t) и y(t) - соответственно входная и выходная величины элемента или системы;

a i , b i - коэффициенты уравнения;

p - оператор, сокращенное условное обозначение операции дифференцирования: d/dt = p.

Еще одним из распространенных методов описания и анализа автоматических систем является операционный. В основе метода лежит преобразование Лапласа

X(p) = L = x(t) e -pt dt, (1.2)

которое устанавливает соответствие между функциями действительной переменной t и функциями комплексной переменной p.

Функциональные элементы, используемые в системах управления, могут иметь самое различное конструктивное исполнение и самые различные принципы действия. Однако общность математических выражений, связывающих входные и выходные величины различных функциональных элементов, позволяет выделить ограниченное число так называемых типовых алгоритмических звеньев. Каждому такому звену соответствует определенное математическое соотношение между входной и выходной величинами. Если это соотношение является элементарным (например, дифференцирование, умножение на постоянный коэффициент), то и звено называется элементарным.

Алгоритмические звенья, которые описываются обыкновенными дифференциальными уравнениями первого и второго порядка, получили название типовых динамических звеньев. Наиболее часто встречающиеся звенья: безынерционное (пропорциональное), инерционное первого порядка (апериодическое), инерционное второго порядка (апериодическое или колебательное), интегрирующее, дифференцирующее, изодромное (пропорционально-интегрирующее), форсирующее (пропорционально-дифференцирующее), интегро-дифференцирующее (с преобладанием интегрирующих либо дифференцирующих свойств), запаздывающее.

Приведем примеры реальных устройств, которые соответствуют определению типового динамического звена.

Типичный пример безынерционного звена, являющегося простейшим среди всех типовых звеньев, - редуктор. Его передаточные свойства описываются алгебраическим уравнением

где k = b/a - передаточный коэффициент редуктора, который зависит от соотношения диаметров или чисел зубьев ведомой и ведущей шестерен.

Реальными интегрирующими звеньями являются электрические исполнительные двигатели постоянного и переменного тока. Дифференциальное уравнение (в операторной форме) идеального интегрирующего звена выглядит следующим образом:

где k – коэффициент пропорциональности, зависящий от конструктивных параметров устройства.

Запаздывающее звено передает сигнал со входа на выход без искажения его формы. Однако все мгновенные значения входной величины выходная величина принимает с некоторым отставанием (запаздыванием). Способностью задерживать сигнал во времени, не изменяя его формы, обладают многие элементы промышленных автоматических систем. В первую очкредь к таким элементам относятся транспортирующие устройства – конвейеры итрубопроводы.

Уравнение запаздывающего звена

Время запаздывания.tгде

В операционной форме передаточная функция запаздывающего звена выглядит следующим образом:

Если запаздывающее звено входит в контур системы управления, то характеристическое уравнение системы будет уже не простым алгебраическим, а трансцендентным. Решение и анализ трансцендентных уравнений связаны с большими трудностями. Поэтому часто в практических расчетах трансцендентную передаточную функцию (1.7) раскладывают в ряд Пада и, учитывая только первые два члена ряда, приближенно заменяют ее дробно-рациональной функцией:

(1.8)

Запаздывающие звенья в большинстве случаев ухудшают устойчивость систем и делают их трудно управляемыми.

В заключение необходимо отметить, что методика анализа, основанная на расчленении системы на типовые звенья, широко вошла в практику инженерных расчетов, выполняемых в процессе конструирования, и в настоящее время является доминирующей.

Лекция 2. Экономическое моделирование.

2.1. Предмет, область приложения и особенности экономического моделирования.

Любой набор уравнений, основанных на определенных предположениях и приближенно описывающих экономику в целом или отдельную ее отрасль (предприятие, процесс), можно считать экономической моделью.

Предметом экономических исследований практически всегда является построение и анализ моделей.

Усложнение производства, повышение ответственности за последствия принимаемых решений и требование принятия более точных решений привели к необходимости использования в управлении методов, подобных экспериментированию в технике или естественных науках.

Однако эксперимент в экономике стоит дороже или вообще невозможен.

Моделирование, как известно, в состоянии заменить эксперимент в экономике.

Это и служит причиной широкого применения моделирования в экономике, превратив его в одно из основных направлений повышения эффективности управления.

Опыт работы ведущих организаций в этой области показывает, что эффективность от применения моделирования обычно составляет 5- 15% снижения себестоимости, повышения производительности или улучшения других технико-экономических показателей.

Метод моделирования позволяет решать и многие другие, нерешенные до сих пор задачи, математизирует экономические расчеты. Внедрение моделирования в управление неразрывно связано с применением ВТ в экономических расчетах и с созданием автоматизированных систем управления производством (АСУП), представляющих собой совокупность наиболее совершенных методов управления (в первую очередь, основанных на экономико-математическом моделировании) и современных технических средств управления.

Использование этих средств при соответствующей квалификации занятых в сфере управления лиц обеспечивает с необходимой оперативностью, при требуемой полноте информации и минимальных трудовых затратах, получение и практическую реализацию оптимальных управленческих решений.

Как было указано ранее, моделирование делится на два основных класса - материальное и идеальное. Роль идеального моделирования особенно велика в экономических исследованиях, поскольку возможности проведения натурного эксперимента и эксперимента с материальными моделями в них ограничены.

Идеальное моделирование в свою очередь подразделяется на знаковое и интуитивное. Интуитивное моделирование в течение долгого времени оставалось главным и единственным методом анализа экономических процессов. Всякий человек, принимающий экономическое решение, руководствуется той или иной неформализованной моделью рассматриваемой им экономической ситуации. В случае интуитивных моделей, основанных на личном опыте принимающего решение лица, это зачастую приводит к ошибочным решениям. В еще большей степени интуитивные модели сдерживали развитие экономической науки, поскольку разные люди могут понимать интуитивную модель по-разному и давать на ее основе различные ответы на один и тот же вопрос. Проникновение в экономические исследования математических моделей создало основу для точного и строгого описания моделей и объяснения выводов, получаемых на их основе. Следует, однако, отметить, что использование математических (знаковых) моделей не уменьшает роли интуитивного моделирования. Так называемые имитационные системы синтезируют оба вида моделирования.

В настоящее время можно сказать, что человечество обладает глубоким пониманием методологии применения математики в естественных науках. И хотя в экономике имеются определенные аналогии с физическими процессами, экономическое моделирование намного сложнее. Это объясняется в первую очередь тем, что экономика охватывает не только производственные процессы, но и производственные отношения. Моделирование производственных процессов не представляет принципиальных трудностей и не намного сложнее, чем моделирование физических процессов. Моделировать же производственные отношения невозможно, не учитывая поведения людей, их интересов и индивидуально принятых решений.

Таким образом, во всех экономических системах можно выделить два основных уровня экономических процессов.

Первый уровень - производственно-технологический. К нему относится описание производственных возможностей изучаемых экономических систем. При математическом моделировании производственных возможностей экономической системы ее обычно разбивают на отдельные, “элементарные” в данной модели, производственные единицы. После этого необходимо описать, во-первых, производственные возможности каждой из единиц, и, во-вторых, возможности обмена ресурсами производства и продукцией между “элементарными” производственными единицами. Производственные возможности описывают при помощи так называемых производственных функций различных типов, а при описании возможностей обмена главную роль играют балансовые соотношения.

На уровне социально-экономических процессов определяется, каким образом реализуются производственные возможности, описанные при моделировании производственно-технологического уровня экономической системы. Существует огромное число вариантов принятия решений и распределения заданий, укладывающихся в технологические ограничения, которые задают производственные возможности системы. В математических моделях выделяют специальные переменные, значения которых определяют единственный вариант развития экономического процесса. Эти переменные принято называть управляющими воздействиями или управлениями. На уровне социально-экономических процессов определяется механизм выбора управляющих воздействий.

Итак, для описания функционирования экономической системы необходимо смоделировать оба уровня: производственно-технологический и социально-экономический. Как показывает опыт, описание второго уровня провести гораздо сложнее.

Существует, однако, большое число проблем, в которых описание социально-экономического уровня не является необходимым. Это так называемые нормативные проблемы, в которых необходимо указать, как надо задать управляющие воздействия, чтобы достичь наилучших в каком-то смысле результатов. При этом необходимо точно определить, что понимается под наилучшим результатом, т.е. сформулировать критерий, по которому можно оценивать и сравнивать различные управляющие воздействия. Критерий (также называют целевой функцией) является функцией переменных модели изучаемой системы. Обычно предполагается, что имеется единственный критерий выбора управления системой. Ищется такое управление, чтобы критерий достигал максимального (выпуск продукции, прибыль и т.д.) или минимального (затраты) значения. Такое значение управления находится методами оптимизации и называется оптимальным.

2.2. Классификация экономических моделей.

Все экономические модели можно в самом общем смысле разбить на два класса:


  • модели, предназначенные для познания свойств реальных или гипотетических экономических систем. Значения параметров таких моделей невозможно оценить по эмпирическим данным. Пример - модели, в которых технология какой-то экономики описывается параметрами большого числа возможных видов деятельности, значительная часть которых никогда не реализуется.

  • модели, параметры которых в принципе могут быть оценены по опытным данным. Эти модели могут служить для прогнозирования или принятия решений.

Второй класс моделей в свою очередь делится на три подкласса:


  • модель фирмы (предприятия) - может быть использована как основа для принятия решений на уровне фирм и аналогичных им организаций;

  • модели централизованно планируемого народного хозяйства - основа для принятия решений на уровне централизованного планирующего органа;

  • модели децентрализованной экономики или отдельного ее сектора - имеют применение при прогнозировании или могут служить основой для экономического регулирования.

Одна из наиболее важных методологических проблем построения экономических моделей - какими уравнениями описывать такие модели - дифференциальными или конечно-разностными.

Хотя многие индивидуальные решения принимаются через регулярные промежутки времени (раз в неделю, месяц и т.д.), наблюдаемые экономистом переменные представляют собой результат множества частных решений, принятых разными лицами в различные моменты времени. Кроме того, интервалы наблюдения большинства экономических переменных существенно больше интервалов между принятыми решений, которые эти переменные отображают. Эти обстоятельства приводят к мысли, что переменные типичной экономической модели следует рассматривать как непрерывные функции времени, и что такую модель следует описывать системой дифференциальных уравнений, причем, чем выше уровень модели - тем это ближе к истине.

Несмотря на то, что многие, если не большинство, модели, рассматриваемые в теоретической литературе, принадлежат к непрерывному типу, в прикладных экономических исследованиях модели обычно представляют в виде систем конечно-разностных уравнений. Это, по-видимому, объясняется трудностью оценки параметров систем стохастических дифференциальных уравнений по дискретным наблюдениям значений переменных. Однако для получения таких оценок нет принципиальных препятствий. Более того, методы, разработанные для оценки параметров дискретных моделей, могут быть с успехом применены и для оценки параметров непрерывных моделей. Следует отметить, что чем современней система управления предприятием (АСУ ТП, ИУС) - тем меньше дискретность, тем с большей степенью достоверности модель можно считать непрерывной.

Один из аргументов в пользу представления экономических моделей в виде дифференциальных уравнений - даже при отсутствии непрерывных наблюдений экономических переменных прогнозирование непрерывных траекторий изменения этих переменных может представлять большую ценность.

Например, предположим, что по убеждению руководства фирмы (предприятия) объем сбыта ее продукции тесно связан с национальным доходом страны. Тогда для прогнозирования сбыта очень полезно иметь прогноз непрерывной траектории изменения национального дохода, хотя измерения этой переменной и производятся только один раз в год. Непрерывная модель позволяет получить такой прогноз по дискретным наблюдениям экономических переменных за прошедший период времени.

Опыт показывает, что почти весь арсенал разработанных в науке моделей может найти применение в процессе принятия управленческих решений - гипотезы, наглядные аналоги, схемы, упорядоченная запись, графовая запись, схемы замещения, программные решения, производственный эксперимент, обобщение производственного опыта, материальные математические модели (аналоговые, структурные, цифровые и функционально-кибернетические), почти все виды физических моделей и др.

Различные виды этих моделей применяются более часто или редко, строятся и исследуются самими линейными руководителями, несущими полную ответственность за принятие и утверждение решений, или же их функциональными помощниками. Одни виды моделей применяются чаще или исключительно только при решении одной группы проблем, например, организационных, другие - при решении, например, проблем планирования и т.п., и не применяются совсем или очень редко при решении других задач.

Наибольшее распространение в экономике вообще и в процессе управления при оптимизации принимаемых решений в частности получают математические (или, как их обычно называют, экономико-математические) модели - идеальные (строящиеся и исследуемые без применения каких-либо специальных приспособлений, лишь в голове человека и на бумаге) или физические (реализуемые с помощью средств электроники и ВТ).

В виде схемы классификация совокупности экономико-математических моделей, используемых для оптимизации вырабатываемых управленческих решений, представлена на рис.2.1.

Наиболее полно разработанными и применяемыми на практике моделями, позволяющими оптимизировать управленческие решения, являются модели математического программирования. Эти модели позволяют делать выбор совокупности чисел (переменных в уравнениях), обеспечивающих экстремум некоторой функции (целевая функция или показатель качества принимаемого решения) при ограничениях, определяемых условиями работы системы.

Модели, в которых показатель качества решения и функции переменных системы являются линейными функциями, называют моделями линейного программирования. Если показатель качества или некоторые функции нелинейны - моделями нелинейного программирования. Нелинейное программирование в свою очередь подразделяется на выпуклое и невыпуклое. В теории выпуклого программирования подробнее других разработаны модели квадратического программирования, которые в связи с этим выделяют в отдельную группу моделей.

Модели математического программирования, в которых переменные в уравнениях по своему физическому смыслу могут принимать лишь ограниченное число дискретных значений, составляют группу моделей целочисленного программирования.

Если исходные параметры при переменных в моделях математического программирования могут изменяться в некоторых пределах, то такие модели называют моделями параметрического программирования.

Модели, с помощью которых решаются условно экстремальные задачи при наличии случайных параметров в их условиях, называют моделями стохастического программирования.

Модели, позволяющие точно или приближенно получать оптимальные решения задачи больших размеров по решениям ряда задач с меньшим числом переменных и ограничений, относятся к моделям блочного программирования.

Рис. 2.1. Классификация экономико-математических моделей.

К математическому программированию относится также и динамическое программирование. Модели динамического программирования позволяют находить оптимальное решение в условиях, когда на конечные результаты влияет результат осуществления решения на предыдущем этапе, а на него - результаты осуществления решения на предшествующем ему этапе и т.д.

В процессе оптимизации управленческих решений широко применяются также модели, основанные на математической теории графов. Частным видом таких моделей являются модели сетевого планирования, которые используются как на стадии оптимизации принимаемых решений, так и при организации их выполнения, контроле выполнения, т.е. являются сквозными моделями, используемыми на всех этапах, вплоть до осуществления принятого управленческого решения. В зависимости от возможности или невозможности точного определения продолжительности работ при построении сетевого графика модели сетевого планирования делятся на детерминированные и стохастические. К моделированию, основанному на теории графов, относится также решение транспортных задач на сети и другие приложения этой теории в экономической работе.

Для оптимизации управленческих решений применяются также и модели балансовых методов анализа, представляющие собой прямоугольные таблицы, в которых по одному из направлений (по горизонтали или по вертикали) проставлены отрасли или подразделения, участвующие в производстве какой-то совокупности продуктов, и указаны количественные данные о величине участия их в производстве, а по другому направлению представлены эти же отрасли или подразделения в качестве потребителя той же совокупности продуктов и указаны их потребности. Такие модели позволяют принимать решения, учитывающие взаимосвязи между отдельными подразделениями производства и необходимость баланса между производством и потреблением. Решения с использованием этих моделей направлены на пропорциональное развитие производства. Применяются они как на уровне межотраслевого планирования, так и при планировании в масштабе отрасли или даже отдельного предприятия.

Перечисленные виды моделей относят обычно к группе детерминированных моделей, хотя некоторые из них могут быть связаны с расчетами на основе применения элементов математической статистики и теории вероятностей, например, стохастическое программирование или стохастическое сетевое планирование.

Другую большую группу экономико-математических моделей, применяемых при оптимизации управленческих решений, составляют стохастические модели или модели, основанные на теории вероятностей и математической статистике.

К стохастическим моделям относятся модели теории анализа корреляций и регрессий, теории дисперсионного анализа, теории массового обслуживания, методов статистических испытаний, теории игр, теории статистических решений, теории информации, теории надежности, теории расписаний, теории запасов и др.

2.3. Основные этапы экономического моделирования.

Первый этап посвящен постановке проблемы. Одной из главных особенностей прикладного (не теоретического) исследования является участие в работе лица или организации, которые ставят проблему перед исследователями (исполнителем), пользуются результатами исследования, финансируют исследования. Такое лицо или организацию принято называть заказчиком. В исследовании операций используется также название: лицо, принимающее решение (ЛПР).

Обычно перед заказчиком стоит большое число разнообразных проблем, причем формулируются они в довольно общих чертах. Цель первого этапа исследования экономических процессов - найти среди проблем, интересующих заказчика, такие вопросы, которые могут быть решены на современном уровне развития экономико-математических методов.

При решении вопроса о выборе проблем, которые будут проанализированы с помощью экономико-математических моделей, прежде всего необходимо помнить, что прикладное исследование может быть проведено только тогда, когда в распоряжении исполнителя имеются проверенные модели, пригодные для описания объектов, которые необходимо моделировать. Если таких моделей нет, то прежде необходимо научиться строить модели интересующих нас объектов, а это обычно требует серьезных усилий и занимает достаточно продолжительное время. Для большей части задач планирования, в которых можно ограничиться лишь производственно-технологи-ческой стороной явлений, уже построены стандартные математические модели, так что исследователю часто остается лишь понять, какая из возможных моделей наиболее пригодна для анализа интересующих его проблем.

Второй этап исследования - построение математической модели изучаемого экономического объекта и ее идентификация. Этот этап состоит в выборе подходящей модели из всего множества известных экономических моделей и в подборе параметров этой модели таким образом, чтобы она соответствовала изучаемому объекту. Процесс подбора значений параметров модели называется идентификацией модели. Параметры производственных функций подбираются на основе анализа технологической информации и статистики экономических показателей.

Как правило, математическая модель не учитывает всех связей, которые возникают при функционировании реальных объектов, что может привести к выбору решения, не реализуемого в жизни. Чтобы этого не произошло, в модель должны быть введены некоторые дополнительные ограничения на переменные. При построении таких ограничений необходимо как можно полнее использовать знания и опыт заказчика.

Следующий после построения модели этап - исследование построенной модели. Предварительно необходимо выбрать способ анализа модели для решения проблем, сформулированных на первом этапе и состоящих при анализе производственно-технологических процессов в выборе наиболее подходящих для заказчика вариантов управления экономической системой.

Существует несколько основных методов анализа экономических моделей.

Первый из них состоит в качественном анализе модели, т.е. в выяснении некоторых ее свойств. Хотя методы качественного анализа очень полезны, такое исследование можно провести лишь в достаточно простых моделях. Кроме того, эти методы обычно связаны с задачей планирования только косвенно.

Если возможно сформулировать критерий, по которому заказчик может количественно оценить различные варианты развития системы, то единственное оптимальное управление (управляющее воздействие) и траекторию можно выбрать путем решения задачи оптимизации. Оптимизационная постановка состоит в следующем. Пусть критерий развития системы имеет вид

С[х(t), u(t)] dt, (2.1)

где х - конечноразностный вектор состояния системы;

u - вектор управляющих воздействий;

Т - некоторый момент времени.

Величина Т часто называется горизонтом планирования. Чем больше значения критерия (2.1), тем этот вариант развития системы больше удовлетворяет ЛПР.

После формулировки критерия оптимизационная постановка сводится к следующей математической задаче: найти среди пар T, удовлетворяющих принятым ограничениям, такую пару£ t £{u(t), x(t)}, 0 {u*(t), x*(t)}, на которой достигается максимальное значение критерия (2.1).

Далее поставленная задача решается одним из методов раздела прикладной математики - методов оптимизации. Полученное T, рекомендуется ЛПР в качестве£ t £управляющее воздействие u*(t), 0 наиболее подходящего воздействия на исследуемый экономический объект. Для выбора единственного оптимального управляющего воздействия u*(t) необходимо задать единственный критерий. В некоторых случаях это сделать невозможно. Кроме того, даже в случае единственного критерия задачу оптимизации удается решить далеко не всегда - модель может оказаться чересчур большой или чересчур сложной для современных методов оптимизации.

Для анализа экономико-математических моделей широко используется и имитационный подход, на основе которого удается преодолеть некоторые из трудностей, связанных с использованием оптимизационного метода. В имитационном подходе, вообще говоря, не требуется задавать критерий развития изучаемого объекта. Вместо него задается управление - либо в виде функции времени u(t), либо в виде функции состояния системы u(x). Подставляя эти заранее сформулированные функции в систему дифференциальных уравнений

X = f (x, u) (2.2)

с начальными данными х (0) = х 0 , можно построить траекторию системы. Если при этом не нарушаются принятые заранее ограничения, то заданное управление является допустимым. Сформулировав заранее некоторое число вариантов управления, можно построить траекторию системы для каждого из вариантов и представить эти варианты заказчику для последующего выбора. В этом подходе вместо проблемы формулировки единственного критерия возникает проблема выбора вариантов управления, которые будут изучаться в исследовании. Такой способ исследования называется методом вариантных расчетов и не очень экономичен. В общем же случае имитация, понимаемая как эксперимент с математической моделью, проводимый с использованием ВТ, является мощным современным методом анализа экономических проблем.

Особенностью оптимизационного и имитационного методов является то, что в них вместо бесконечного числа вариантов управляющих воздействий и соответствующих им траекторий рассматривается один (оптимальный) или несколько (конечное число при имитации) вариантов управления. Имеется еще один подход, предназначенный для оценки возможностей системы в целом, при всех допустимых управлениях - подход на основе множеств достижимости. Множеством достижимости Г(Т) для системы называется множество всех таких состояний х, в которые систему можно привести при помощи допустимого управления из точки х 0 за время Т. Изучая множество Г(Т), заказчик может выбрать наиболее удовлетворяющий его конечный результат развития системы.

Тема2. Основные понятия, структура и принципы построения систем управления технологическими процессами, производством.

Лекция 3. Основные понятия. Обобщенная структура системы управления.

3.1. Понятия объекта управления, технологического процесса, системы управления.

Устройство (или совокупность устройств), осуществляющее технологический процесс и нуждающееся в специально организованных воздействиях извне для осуществления его алгоритма функционирования, называется управляемым объектом.

Алгоритм управления - совокупность предписаний, определяющая характер воздействий извне на управляемый объект с целью осуществления его алгоритма функционирования.

Управление - процесс осуществления воздействий, соответствующих алгоритму управления. Обычно управление не может полностью компенсировать влияние возмущений в каждый момент времени и поэтому алгоритм функционирования управляемого объекта выполняется лишь приближенно.

Устройство, осуществляющее в соответствии с алгоритмом управления воздействие на управляемый объект, называется управляющим устройством. Алгоритм функционирования управляющего устройства и есть алгоритм управления.

Совокупность управляемого объекта и управляющего устройства, взаимодействующих между собой, называют системой управления. В одной системе может быть несколько управляемых объектов или управляющих устройств.

Технологический процесс - совокупность последовательных и параллельных операций, направленных на достижение требуемого производственного результата.

Совокупность технологического процесса и реализующего его оборудования называют технологическим объектом управления.

3.2. Этапы управления, структура современных систем управления объектами, технологическими процессами, производством.

Процесс управления можно разделить на четыре этапа циркуляции информации:

  • получение информации;
  • переработка информации (принятие правильного решения, влияющего на ход процесса);
  • использование информации (изменение хода производственного процесса в нужном направлении);
  • передача информации (этап в каждом “цикле” управления повторяется дважды).

В соответствии с указанными этапами технические средства систем управления можно подразделить на четыре группы:

  • средства получения (формирования) информации: датчики, сенсоры, измерительные приборы и т.п. (КИП);
  • средства передачи информации на расстояние: системы телемеханики (СТМ), в более общем случае - системы передачи информации (СПИ);
  • средства переработки информации: устройства вычислительной техники (УВТ) и другие специализированные устройства;
  • средства для использования информации: автоматические регуляторы, исполнительные механизмы (ИМ).

Рис.3.1. Обобщенная структура системы управления.

Структура современной системы управления производством на примере системы управления угольной шахты приведена на рис.3.2.

Рис. 3.2. Структура современной системы управления производством на примере системы управления угольной шахты.

ПУ СТМ – пункт управления системы телемеханики; КП СТМ – контролируемый пункт системы телемеханики; АКУ – аппаратура контроля и управления оборудованием; ВМП – вентилятор местного проветривания.

3.3. Устройства получения и передачи информации.

3.3.1. Устройства формирования информации (датчики).

Первичные преобразователи или датчики используются для получения сигналов, которые далее могут обрабатываться в электронных схемах, кодироваться с помощью АЦП, запоминаться и анализироваться компьютерами.

Если исследуемый (получаемый) сигнал настолько мал, что его маскируют шумы и помехи, то используются мощные методы выделения частот сигнала, такие, как синхронное детектирование, усреднение сигналов, многоканальные счетчики, а также корреляционный и спектральный анализы, с помощью которых требуемый сигнал восстанавливается.

Применяемые в промышленности датчики подразделяются на два больших класса: дискретные и аналоговые .

В дискретных датчиках выходной сигнал может иметь только два значения (например, “включено” - “выключено” и т.д.), а в аналоговых присутствует весь спектр измеряемой величины.

Существуют датчики аналоговые по принципу измерения, но дискретные по виду выходного сигнала. Это имеет место, когда для функционирования системы не обязательно иметь информацию о всех значениях какой-либо величины, а достаточно знать, превышает эта величина заданное (например, аварийное) значение или нет.

Все датчики подразделяются на контактные и бесконтактные по типу “съема” сигнала с объекта. Например, измерение силы электрического тока может быть произведено с помощью обычного амперметра, который включается в разрыв электроцепи, а также прибором, использующим эффект Холла, который реагирует на магнитное поле, создаваемое протекающим по проводнику током.

Пример простейшего дискретного датчика - датчик уровня жидкости, который сам по себе является контактом, который замкнут, если находится ниже уровня жидкости и разомкнут, если выше.

Дискретные датчики имеют либо релейный выход (контакт замкнут или разомкнут), либо ключевой , обычно полупроводниковый (ключ открыт или закрыт).

Аналоговые датчики можно подразделить на измеряющие электрические и неэлектрические величины.

К первой группе относятся измерители тока, напряжения, мощности, количества эл.энергии и т.д.

Наиболее широко распространенными представителями второй группы являются измерители температуры, уровня светимости, магнитного поля, усилия, перемещения, скорости и т.д.

^ Датчики температуры.

Термопары.

При соединении между собой двух проводов из различных металлов на их концах возникает небольшая разность потенциалов обычно около 1 мВ с температурным коэффициентом около 50 мкВ/°С. Такие соединения называют термопарами. Комбинируя различные пары сплавов, можно измерять температуры от -270 до 2500°С с точностью 0,5 - 2°С. Каждая пара изготовляется путем сварки (спайки) двух разных металлов таким образом, чтобы получилось небольшое по размеру соединение - спай. Типичные термопары: J - железо - константан (55% Cu - 45% Ni); Т - медь - константан; R - платина - 87% Pt- 13% Rh и т.п. Всего различают 7 основных типов термопар.

Термисторы - полупроводниковые устройства, у которых температурный коэффициент С. Точность 0,1 -°С. Диапазон от - 50 до 300° - 4%/»сопротивления (ТКС) С. Обычно имеют сопротивление несколько сотен Ом при комнатной°0,2 температуре. Не предъявляют высоких требований к последующим электрическим схемам. Наиболее часто применяется мостовая схема подключения термистора в сочетании с дифференциальным усилителем.

Термисторный метод измерения по сравнению с другими проще и точнее, но термисторы чувствительны к саморазогреву, хрупки и пригодны для относительно узкой области температур.

^ Платиновые термометры сопротивления представляют собой просто катушку из очень чистой платиновой проволоки с С. Чрезвычайно стабильны во времени, точны° 0,4%/»положительным ТКС С), имеют широкий диапазон измерения (от - 200 до°(0,02 - 0,2 С),°1000 но стоимость их высока.

^ Датчики температуры на ИС. Падение напряжения на полупроводниковом p-n переходе также зависит от температуры. В настоящее время выпускаются интегральные микросхемы, использующие этот эффект, с токовым, потенциальным либо частотным выходом. Типовой диапазон от - 55 до С, отличаются простотой внешних соединений.° 1±С, точность °125

^ Кварцевые термометры используют эффект изменения резонансной частоты кристалла кварца со специально подобранным сечением (типовые кварцевые генераторы имеют самый низкий ТК). Отдельные образцы таких датчиков имеют погрешность 10´4 -5 С в диапазоне от - 50 до° С.°150

Бесконтактное или дистанционное измерение температуры возможно с помощью пирометров и термографов. Удобно для измерения температуры очень горячих объектов или же объектов, расположенных в недоступных местах.

^ Деформация и смещение (положение, усилие).

Измерение таких физических переменных, как положение и усилие, само по себе достаточно сложно, и прибор для измерения этих величин должен включать в себя такие устройства, как тензодатчик, дифференциальный преобразователь линейных перемещений (ДПЛП) и т.д. Основным здесь является измерение перемещения.

Существует несколько наиболее часто используемых методов измерения положения, смещения (изменение положения) и деформации (относительного удлинения).

ДПЛП строятся в виде трансформаторов с подвижным сердечником, в которых возбуждается переменным током одна обмотка и измеряется индуцированное напряжение во второй обмотке.

Тензодатчики измеряют удлинение и(или) изгиб сборки из четырех металлических тонкопленочных резисторов, подвергаемой деформации. Электрическая схема тензодатчиков подобна мостовой: на два противоположно расположенных зажима подается постоянное напряжение, а с двух других снимается разность потенциалов.

^ Емкостные преобразователи. Очень чувствительный метод измерения перемещений реализуется с помощью двух близко расположенных друг к другу пластин или одной пластины, заключенной между парой внешних пластин. Включив такой конденсатор в резонансную схему, можно измерить очень малые изменения положения. Емкостные микрофоны используют этот принцип для преобразования акустического давления или скорости его изменения в электрический сигнал звуковой частоты.

Измерение углов поворота объекта производится с помощью специальных модификаций ДПЛП или синусно-косинусных преобразователей. В обоих случаях используется возбуждение переменным током, и угловое положение измеряется с точностью до угловой минуты.

Измерение положения с высокой точностью (1 мкм) можно проводить, используя отражение лазерного луча от зеркал, скрепленных с объектом, и считывая число интерференционных полос (интерферометрия).

^ Кварцевые кристаллы откликаются на деформацию изменением своей резонансной частоты. Этим обеспечивается очень точный метод измерения малых смещений или изменений давления.

Описанные методы позволяют измерять скорость, ускорение, давление, силу (массу).

В промышленности и бытовой технике широко используется оптико-механический способ измерения перемещения и скорости. Он основан на применении оптопары (фотодиод-светодиод или оптрон с открытым каналом) и диска с лепестками, приводимого во вращение поверхностью объекта, скорость перемещения которого необходимо измерить.

С помощью измерения магнитных полей возможно “бесконтактное” измерение силы тока и других производных величин. Такие датчики основаны на эффекте Холла , который вызывает появление поперечного напряжения на токонесущем куске материала (обычно это полупроводник), помещенном в магнитное поле.

Измерить частоту, период колебаний или временной интервал с высокой степенью точности достаточно просто имея генератор эталонной частоты и несложную цифровую схему обработки.

^ Измерение уровня излучения в настоящее время осуществляется в основном полупроводниковыми приборами - фотосопротивлениями, фотодиодами, фототранзисторами, и основано на эффекте возникновения фототока при попадании света (потока фотонов) на обратно смещенный р-n переход.

В обычных фотодиодах преобразование световой энергии в электрический ток происходит без усиления, а в лавинных фотодиодах и фототранзисторах - с усилением.

В промышленных системах управления важным элементом являются устройства гальванической развязки. Они реализуются чаще всего на базе трансформаторов или оптронов (оптронная развязка).

Оптрон - оптическая пара, состоящая из светодиода и фотодиода (фототранзистора, фототиристора), заключенных в одном корпусе.

Оптронная развязка обладает лучшими характеристиками, меньшими габаритами и стоимостью, чем трансформаторная.

Гальваническая развязка используется для повышения безопасности, помехоустойчивости и надежности аппаратуры.

Важнейшим элементом систем являются ЦАП и АЦП.

^ Цифро-аналоговый преобразователь (ЦАП) представляет собой устройство для автоматического декодирования входных величин, представленных числовыми кодами (цифровых сигналов), в непрерывные во времени сигналы, необходимые для работы с аналоговыми устройствами.

Аналого-цифровой преобразователь (АЦП) представляет собой устройство для автоматического преобразования непрерывно изменяющихся во времени аналоговых сигналов в эквивалентные значения числовых кодов.

3.3.2. Системы передачи информации (СПИ).

3.3.2.1. Структура СПИ.

Современные СПИ представляют собой сложные комплексы, состоящие из различных функционально взаимосвязанных элементов. Эти системы характеризуются не только большим числом элементов, но и иерархичностью структуры, избыточностью, наличием между элементами прямых, обратных и перекрестных связей.

Обобщенная модель СПИ
Канал

Источник - Приемник - Получатель

сообщений Передатчик сообщений

Канал (в узком смысле) - среда, используемая для передачи сигналов от передатчика к приемнику.

Передатчик - устройство, преобразующее сообщения источника А в сигналы S, наиболее соответствующие характеристикам данного канала. Операции, выполняемые передатчиком, могут включать в себя формирование первичного сигнала, модуляцию, кодирование, сжатие данных , и т.д.

Приемник реализует функцию обработки сигналов X(t) = S(t) f(t) на выходе канала с целью наилучшего воспроизведения (восстановления) переданных сообщений А на приемном конце.

3.3.2.2.Типичные виды передаваемых сигналов:

1) сигналы телемеханики (данные);

2) речевые (звуковые) сигналы;

3) видеосигналы.

3.3.2.3. Каналы связи.

Тип канала связи определяет в большинстве случаев тип, назначение, область применения и основные характеристики СПИ.

1) проводные каналы - информация передается по электрическим кабелям различного типа:

- телефонная пара - используется при невысоких требованиях к пропускной способности канала и помехоустойчивости, наиболее дешевый вид кабеля;

- витая пара - кабель состоит из попарно свитых проводников, что снижает удельную емкость, а следовательно, увеличивает полосу пропускания;

- коаксиальный кабель - сигнальный провод расположен строго по оси кабеля (аксиально), а общий провод - вокруг него, выполняя еще и функцию экрана, причем отделен от сигнального диэлектриком на определенное расстояние, что значительно снижает удельную емкость и повышает помехоустойчивость. Коаксиальные кабели обладают наибольшей пропускной способностью по сравнению с предыдущими типами (сотни МГц), но значительно дороже.

- силовая сеть электроснабжения - используется в качестве канала связи при невысоких требованиях к пропускной способности или когда прокладка отдельной линии связи невозможна либо нецелесообразна. Требует довольно сложных устройств присоединения к каналу.

2) радиоканал - информация передается путем распространения электромагнитных колебаний в свободной среде. Очень широкая область применения: промышленность, телефонная связь, телевидение, радиовещание, спутниковая связь и т.д. Требует значительных затрат при создании передающих станций для передачи на большие расстояния, поэтому обычно применяется при большом количестве абонентов.

3) оптический канал - может быть открытым и световодным.

- открытый оптический канал - информация передается световыми сигналами через атмосферу, в настоящее время практически не имеет применения из-за зависимости характеристик от состояния атмосферы.

- канал связи на волоконных световодах - световой поток распространяется по специально организованному каналу - световоду.

^ Волоконно-оптическая связь - самая новая отрасль в области СПИ, и наиболее перспективная во многих применениях, особенно в промышленности.

В качестве среды распространения световых колебаний используются волоконные световоды , светопроводящий слой (сердцевина) которых выполнен из кварца с очень высокой прозрачностью (в десятки тысяч раз прозрачнее обычного оконного стекла), а оболочка - из полимерных материалов, несущих защитную функцию. Сердцевина, в свою очередь, выполняется двухслойной, причем коэффициент преломления внешней части отличается от коэффициента преломления внутренней. За счет этого световой поток, попадающий в световод, многократно отражается от границы раздела слоев и таким образом проходит через световод.

^ Волоконно-оптические системы передачи (ВОСП), базирующиеся на применении волоконных световодов, обладают следующими основными преимуществами по сравнению с другими системами:

Невосприимчивость к электромагнитным помехам (особое значение имеет для применения в промышленности с опасными условиями);

Высокая пропускная способность и дальность передачи;

Малые габариты и масса кабеля;

Отсутствие ценных материалов в кабеле;

Полная гальваническая развязка между приемной и передающей частями;

Практически невозможность несанкционированного доступа в физический канал связи, и многие другие.

3.4. Виды систем управления.

Различают системы местного и дистанционного управления (телеуправление). Последние имеют место, когда производственный процесс рассредоточен на большой площади. Это имеет место в системах управления крупными предприятиями: металлургические заводы, предприятия горнодобывающей, химической и других отраслей промышленности, а также на объектах управления большой протяженности – нефтепроводы, линии электропередачи и т.д. В системах местного управления объекты управления обычно расположены компактно и на незначительном расстоянии от управляющего устройства. Например, металлообрабатывающие станки с ЧПУ, подъемные краны и т.д. В этом случае специализированные СПИ не используются.

Существуют автоматические и автоматизированные системы управления.

Система управления, в которой все функции управления процессом перекладываются с человека на автоматические устройства, называется автоматической системой управления.

В автоматизированной системе управления функции управляющего устройства выполняют как средства вычислительной техники, так и человек.

Системы управления могут быть классифицированы и по другим самым различным признакам. Классификация по алгоритмическим и неалгоритмическим признакам приведена на рис 3.3.

Рис.3.3. Классификация систем управления по алгоритмическим и неалгоритмическим признакам.

  • Вопрос 39. Формирование нового облика мирового сообщества в послевоенное время, социально-экономическое и общественно-политическое развитие СССР в послевоенный период. Фактор ВБА.
  • Выбор и экономическое обоснование метода получения заготовки

  • Моделирование представляет собой ме­тод исследования объекта, который основан на создании и последующем анализе искусственного объекта (обекта-посредника), имеющего оп­ределённое существенное сходство с реальным объектом и обладаю­щего рядом свойств последнего. Такой объект-посредник называется моделью объекта. Модель описывается по определенным правилам с использованием определенного языка. По языку представления экономические модели подразделяются на: вербальные (словесно-описательные), математические и графические. В микроэкономи­ческой теории используются все три типа моделей, но предпочте­ние отдается математическим - из-за их точности, краткости и строгости, и графическим - из-за их наглядности. Иногда встре­чаются и смешанные модели. Существует огромное множество эко­номических моделей, среди них - модель спроса и предложения, модель «круговых потоков», модель мультипликатора, модель «жиз­ненного цикла» и т.п.

    Прекрасным примером вербально-графического моделирования взаимосвязи и взаимодействия отдельных экономических субъек­тов может служить хорошо известная модель «круговых потоков». Рассмотрим ее более подробно, так как она методологически важ­на для микроэкономики. Модель описывает процесс координации решений домашних хозяйств и фирм о производстве и распределе­нии благ и ресурсов через механизмы соответствующих рынков (рис. 1.2).

    Модель показывает, что экономическая деятельность осуществ­ляется по кругу. Внутренний круг стрелок описывает потоки благ и ресурсов в натуральном выражении, внешний круг направлен в про­тивоположную сторону и описывает эквивалентные денежные пото­ки. Натуральные и денежные потоки движутся в противоположных направлениях, так как, отчуждая принадлежащее ему натуральное благо, рыночный субъект получает взамен определенную эквивален­тную сумму денег, и наоборот.

    Денежные расходы Выручка от реализации благ Денежные Спрос на факторы

    Рис. 1.2. Модель круговых потоков

    Фирмы производят блага и продают их на рынке продуктов, по­лучая возможность за счет выручки покупать факторы у домашних хозяйств. Домашние хозяйства воспроизводят факторы производ­ства (или их собственников) и реализуют их на рынке ресурсов, по­лучая возможность покупать потребительские блага на рынке про­дуктов. Модель наглядно иллюстрирует взаимосвязь рынков и ры­ночных агентов.

    Из модели видно, каким образом рынок регулирует натурально-стоимостные потоки. Домашние хозяйства и фирмы встречаются дважды - на рынке ресурсов и на рынке продуктов. Рынок продук­тов при посредстве своеобразного стоимостного «опроса» домохозяйств подскажет фирмам, что должно быть произведено, какого качества и в каких объемах. Результат встречи наших субъектов на рынке ресурсов определяется тем, как производятся товары, какие средства и в каких пропорциях для этого необходимы. Кроме того, рынок ресурсов определяет величину дохода домашних хозяйств от реализации принадлежащих им факторов производства, а это, в ко­нечном счете, дает ответ на вопрос о том, кому достанутся произве­денные товары и услуги. В итоге, уже на этой простейшей модели мы получили иллюстрацию того, как рыночное взаимодействие экономических субъектов приводит к решению трех фундаменталь­ных вопросов любой экономической системы.

    Конечно же, модель «круговых потоков», подобно любой другой модели, не отражает всех процессов, протекающих в экономике. Например, она не учитывает межфирменных потоков промежуточного продукта, производства домашних хозяйств с использованием собственных ресурсов, игнорирует государственное вмешательство в экономику и т.д. Означает ли это, что модель плоха? Наверное, нет. Не претендуя на всесторонность охвата действительности, она высвечивает именно те взаимосвязи, которые интересуют нас в свя­зи с самым общим анализом рыночной системы, а большего от нее и не требуется. Она еще послужит нам в дальнейшем: во-первых, при анализе того, как домашние хозяйства принимают решения, предъяв­ляя спрос на рынке товаров и услуг и предлагая факторы на рынке ресурсов, во-вторых, при анализе поведения фирм в качестве покупа­телей и продавцов.

    Краткие выводы

    1. Экономика, или экономическая теория, изучает закономерно­сти, присущие деятельности и отношениям людей в процессе про­изводства, распределения, обмена и потребления совокупности благ, необходимых для поддержания жизни отдельного человека и обще­ства в целом.

    2. Экономическая теория изучает формы и способы решения людьми проблемы естественной ограниченности благ и ресурсов, их распределения с целью производственного или личного потребле­ния. В общем смысле, она призвана дать ответ на три вопроса - Что производить (как удовлетворить общественные потребности)^ Как производить (каким образом использовать ресурсы) ? Для кого произ­водить (кто получит произведенный продукт) ? Ограниченность благ также приводит к необходимости решения проблем выбора, рацио­нирования и экономии, с которыми сталкиваются все экономичес­кие субъекты в процессе своего воспроизводства.

    3. Микроэкономика как наука изучает экономическую деятель­ность индивидуальных экономических субъектов (агентов), а имен­но - процесс разработки, принятия и реализации ими решений для достижения собственных рациональных экономических целей.

    4. Индивидуальный экономический субъект (агент) - это первич­ный (простой) элемент хозяйственной системы, который невозмож­но разбить на составные части в рамках (терминах) этой системы и который самостоятельно осуществляет определенные экономичес­кие функции с целью собственного воспроизводства и развития.

    Принцип альтернативности состоит в том, что экономический субъект всегда имеет возможность выбрать один из возможных ва­риантов своей экономической деятельности. Различаются альтер­нативность целеполагания, альтернативность действий и альтерна­тивность в определении структур используемых благ. Результат процесса выбора определенного варианта развития экономическим субъектом представляет собой экономическое решение. Принцип альтернативности положен в основу известной модели производ­ственных возможностей, позволяющей проанализировать эконо­мическое развитие с позиции ответа на вопросы: Как? Что? и Для кого производить?

    5. Экономические институты представляют собой устойчивые связи, правила, нормы и отношения, организующие и регулирую­щие экономическую деятельность людей. К экономическим инсти­тутам относятся - отношения собственности, рынки, различные правовые системы, фирмы, домашние хозяйства и т.п. Совокупность исторически и географически определенных институтов и институ­циональных отношений составляет основу различных экономичес­ких систем. Известны, по крайней мере, три основные разновиднос­ти экономических систем: патриархальная экономика, плановая эко­номика и рыночная экономика. Большинство современных эконо­мических систем могут быть определены как экономики смешанно­го типа.

    6. Рыночная экономика - это форма экономической организа­ции, основанная на свободном обмене ценностными эквивалента­ми, осуществляемого экономическими субъектами. Каждый субъект реализует свои цели на возмездной основе, беря что-то у общества и при этом оставляя обществу взамен нечто равноценное, в форме про­дукта. услуги или собственности. При этом обязательно подразу­мевается независимость отдельных субъектов и желательно - ра­венство возможностей в принятии и выполнении решений.

    7. Методология экономической теории может рассматриваться в качестве системы концептуально непротиворечивых способов систематизации и обобщения экономической информации (фактов, статистических данных) или же с другой стороны - в качестве логи­ческих (рациональных) конструкций, приемов, инструментов поис­ка решений проблем, связанных с предметной областью науки.

    8. По способу построения логических конструкций экономичес­кий анализ бывает позитивный и нормативный. Позитивный метод описывает причинно-следственные связи и фактическое положение дел. Он устанавливает причины и следствия тех или иных событий, поскольку они имели или имеют место в реальной действительности, не давая им никакой оценки. В противоположность ему нормативный анализ имеет дело с утверждениями, заключающими в себе долженствование или же оценочные суждения. Нормативный метод вырабатывает целевые установки и отвечает на вопрос «Как должно быть?»

    9. Предельный (маржинальный) анализ представляет собой спо­соб анализа экономических показателей (величин), предполагающий исследование их динамики. Термин «предельный» означает «допол­нительный», «добавочный». Сущность предельного анализа состоит в том, что с его помощью исследуется изменение экономической величины (или ее характеристики), являющейся частью определен­ной совокупности, и таким образом определяются тенденции разви­тия всей совокупности в целом.

    10. Функциональный анализ состоит в установлении и исследо­вании зависимостей одних экономических величин от других. Фун­кция устанавливает определенную форму такой взаимосвязи. Как правило функциональная зависимость задается математически. Графический анализ состоит в моделировании экономических со­стояний и действий при помощи графиков функций, схем и других форм графического представления. Как правило данный метод используется в сочетании с другими методами экономического анализа.

    11. Моделирование представляет собой метод исследования объекта, который основан на создании и последующем анализе ис­кусственного объекта, имеющего определенное существенное сход­ство с реальным объектом и обладающего рядом свойств последне­го. Такой объект-посредник называется моделью объекта. Модель описывается по определенным правилам с использованием опреде­ленного языка. По языку представления экономические модели под­разделяются на вербальные (словесно-описательные), математичес­кие и графические.

    Ключевые понятия

    Экономика

    Экономическая деятельность

    Экономический субъект

    Экономический агент

    Ограниченность благ

    Предмет микроэкономики

    Экономические институты

    Экономические системы

    Рыночная экономика

    Альтернативные издержки

    Экономическая трансформация

    Модели и моделирование

    Вопросы и задания

    Вопросы для обсуждения

    1. Какова связь экономической теории с другими экономичес­кими и социальными науками?

    2. Является ли государство экономическим субъектом?

    3. Охарактеризуйте основные экономические системы. Каковы их преимущества и недостатки?

    4. Какова роль цены в рыночной экономике?

    5. Какой смысл имеет предельный, функциональный и графи­ческий анализ в микроэкономике?

    6. Почему моделирование является одним из основных методов экономической теории?

    7. Как кривая производственных возможностей может быть ис­пользована для экономического анализа?

    Задачи и упражнения

    1. По имеющейся технологии производства канцтоваров, произ­воле гвенные возможности гипотетической экономики таковы, что она может выпускать 10 тыс. ручек и 6 тыс. карандашей в день, или же 8 тыс. ручек и 8 тыс. карандашей в день.

    а) Как количественно оценить трансформационные возможнос­ти данной экономики при данном переходе?

    б) Как экономист прокомментирует ситуацию, если данная эко­номика произведет за один день 20 тыс. ручек?

    а) Исходя из данных, альтернативные издержки дополнительного производства двух тысяч карандашей составляет отказ от произ­водства двух тысяч ручек, то есть трансформационные возмож­ности при данных объемах можно количественно оценить как 1:1.

    б) Очевидно, что такой объем производства ручек находится за границей производственных возможностей экономики. Един­ственное объяснение состоит в том, что в данной экономике произошел экономический рост.

    1. В задачи экономической теории входит решение следующих вопросов:

    а) как перераспределять блага, чтобы не было бедных;

    б) как перераспределять блага, чтобы не было богатых;

    в) как решать проблемы редкости благ;

    г) как решать проблемы избыточных потребностей.

    2. Микроэкономика изучает:

    а) рациональное поведение экономического субъекта:

    б) рыночное ценообразование,

    в) проблемы распределения ресурсов;

    г) все вышеперечисленное.

    3. Какое утверждение является позитивным?

    а) если сокращается производство масла, то будет увеличиваться производство пушек;

    б) производство масла должно быть больше, чем производство пушек;

    в) производство масла и производство пушек должно соответ­ствовать потребностям государства;

    г) производство масла и производство пушек должно соответ­ствовать спросу экономических субъектов.

    4. Термин «предельный» в микроэкономике означает:

    а) небольшое изменение экономической величины;

    б) пофаничное изменение экономической величины;

    в) дополнительное изменение экономической величины;

    г) очень большое изменение экономической величины.

    5. Модель «круговых потоков» включает:

    а) товарно-денежные потоки;

    б) рынки благ, услуг и факторов производства;

    в) ценообразование;

    г) верно а) и б).

    Литература

    Вэриан X. Микроэкономика. Промежуточный уровень. ЮНИТИ, 1997. - Гл. 1.

    Гребенников П.И., Леусский А.И., Тарасович Л.С. Микроэкономи­ка. - СПб.: Изд. СПб.УЭиФ, 1996. - Гл. 1. Емирв Р.Г., Лукин М.Ю. Микроэкономика. - М.: «ДИС», 1997. - Гл. 1. Долан Э.Д., Лиднсей Д. Рынок: микроэкономическая модель. - СПб, 1992. - Гл. 1.

    Дорнбуш Р., Фишер С., Шмалензи Р. Экономика. - М.: «Дело», 1993. - Гл. 1.

    Пиндаик Р., Рубинфельд Д. Микроэкономика. - М.: Экономика, 1992. - Гл. 1.

    Хаиман Д.Н. Современная микроэкономика: анализ и примене­ние. Т. 1-2. - М.: Финансы и статисгикя 1999 - Гл 1

    РЫНОЧНЫЙ МЕХАНИЗМ

    2.1. Сущность и механизм рыночного равновесия

    2.2. Свойства рыночного равновесия

    2.3. Понятие, виды и свойства экономической эластичности

    В данной главе мы приступаем к исследованию деятельности ин­дивидуальных экономических субъектов в условиях рыночной эко­номики, а, следовательно - в специфической экономической сре­де, основу которой составляют товарно-денежные отношения. Прежде чем заняться непосредственно изучением процесса приня­тия экономических решений основными субъектами рынка - фир­мами и домашними хозяйствами, мы вначале должны, разумеется, охарактеризовать саму эту среду, понять ее сущность, структуру и особенности, показать механизмы ее функционирования и органи­зации взаимодействия субъектов, выявить возможные выгоды или потери, определить роль государственного регулирования рынков. Традиционно данная глава завершается определением понятия эко­номической эластичности, выступающего в качестве важнейшего показателя основных составляющих элементов рыночного меха­низма.

    * Что такое рыночный механизм и в чем состоит принцип рав­новесия?

    * Что такое рыночный спрос, чем определяется и на что влияет

    форма (наклон) линии спроса? » Что такое рыночное предложение?

    * Как устанавливается рыночное равновесие?

    * Как учитывается фактор времени в экономических моделях?

    * Всегда ли существует на рынке равновесие и единственно ли оно?

    * Что такое области экономической активности?

    * Каково происхождение общественной выгоды от равновесной цены?

    * Как государство влияет на рыночное ценообразование?

    * В чем сущность и каковы свойства экономической эластичности?


    ©2015-2019 сайт
    Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
    Дата создания страницы: 2017-03-31

    Случайные статьи

    Вверх